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Getting started with Torch
Five simple examples

Tutorials, Demos, Examples
Package Documentation
Developer Documentation

QUICK START

DOCUMENTATION

Here are five simple hands-on steps, to get started with Torch! This tutorial supposes the package torch  is
already required via

require 'torch'

or that you are using the REPL th  (which requires it automatically).

We rely on a few torch functions here:

rand()  which creates tensor drawn from uniform distribution

t()  which transposes a tensor (note it returns a new view)

dot()  which performs a dot product between two tensors

eye()  which returns a identity matrix

*  operator over matrices (which performs a matrix-vector or matrix-matrix multiplication)

We first make sure the random seed is the same for everyone

torch.manualSeed(1234)

-- choose a dimension

N = 5

-- create a random NxN matrix

A = torch.rand(N, N)

-- make it symmetric positive

A = A*A:t()

-- make it definite

A:add(0.001, torch.eye(N))

-- add a linear term

b = torch.rand(N)

-- create the quadratic form

function J(x)

   return 0.5*x:dot(A*x)-b:dot(x)

end

Printing the function value (here on a random point) can be easily done with:

print(J(torch.rand(N)))

We can inverse the matrix (which might not be numerically optimal)
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xs = torch.inverse(A)*b

print(string.format('J(x^*) = %g', J(xs)))

We first define the gradient w.r.t. x  of J(x) :

function dJ(x)

  return A*x-b

end

We then define some current solution:

x = torch.rand(N)

And then apply gradient descent (with a given learning rate lr ) for a while:

lr = 0.01

for i=1,20000 do

  x = x - dJ(x)*lr

  -- we print the value of the objective function at each iteration

  print(string.format('at iter %d J(x) = %f', i, J(x)))

end

You should see

...

at iter 19995 J(x) = -3.135664

at iter 19996 J(x) = -3.135664

at iter 19997 J(x) = -3.135665

at iter 19998 J(x) = -3.135665

at iter 19999 J(x) = -3.135665

at iter 20000 J(x) = -3.135666

Want to use more advanced optimization techniques, like conjugate gradient or LBFGS? The optim  package
is there for that purpose! First, we need to install it:

luarocks install optim

In practice, it is never a good idea to use global variables. Use local  at everywhere. In our examples, we have
defined everything in global, such that they can be cut-and-pasted in the interpreter command line. Indeed,
defining a local like:

local A = torch.rand(N, N)

will be only available to the current scope, which, when running the interpreter, is limited to the current input
line. Subsequent lines would not have access to this local.

3. Search the minimum by gradient descent

4. Using the optim package

A word on local variables
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In lua one can define a scope with the do...end  directives:

do

   local A = torch.rand(N, N)

   print(A)

end

print(A)

If you cut-and-paste this in the command line, the first print will be a 5x5 matrix (because the local A  is defined
for the duration of the scope do...end ), but will be nil  afterwards.

We need to define a closure which returns both J(x)  and dJ(x) . Here we define a scope with do...end ,
such that the local variable neval  is an upvalue to JdJ(x) : only JdJ(x)  will be aware of it. Note that in a
script, one would not need to have the do...end  scope, as the scope of neval  would be until the end of
the script file (and not the end of the line like the command line).

do

   local neval = 0

   function JdJ(x)

      local Jx = J(x)

      neval = neval + 1

      print(string.format('after %d evaluations J(x) = %f', neval, Jx))

      return Jx, dJ(x)

   end

end

The package is not loaded by default, so let's require it:

require 'optim'

We first define a state for conjugate gradient:

state = {

   verbose = true,

   maxIter = 100

}

and now we train:

x = torch.rand(N)

optim.cg(JdJ, x, state)

You should see something like:

after 120 evaluation J(x) = -3.136835

after 121 evaluation J(x) = -3.136836

after 122 evaluation J(x) = -3.136837

after 123 evaluation J(x) = -3.136838

after 124 evaluation J(x) = -3.136840

after 125 evaluation J(x) = -3.136838

Defining a closure with an upvalue

Training with optim

5. Plot
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Plotting can be achieved in various ways. For example, one could use the recent iTorch package. Here, we are
going to use gnuplot .

luarocks install gnuplot

We modify slightly the closure we had previously, such that it stores intermediate function evaluations (as well
as the real time it took to train so far):

evaluations = {}

time = {}

timer = torch.Timer()

neval = 0

function JdJ(x)

   local Jx = J(x)

   neval = neval + 1

   print(string.format('after %d evaluations, J(x) = %f', neval, Jx))

   table.insert(evaluations, Jx)

   table.insert(time, timer:time().real)

   return Jx, dJ(x)

end

Now we can train it:

state = {

   verbose = true,

   maxIter = 100

}

x0 = torch.rand(N)

cgx = x0:clone() -- make a copy of x0

timer:reset()

optim.cg(JdJ, cgx, state)

-- we convert the evaluations and time tables to tensors for plotting:

cgtime = torch.Tensor(time)

cgevaluations = torch.Tensor(evaluations)

Let's add the training with stochastic gradient, using optim :

evaluations = {}

time = {}

neval = 0

state = {

  lr = 0.1

}

-- we start from the same starting point than for CG

x = x0:clone()

-- reset the timer!

timer:reset()

-- note that SGD optimizer requires us to do the loop

for i=1,1000 do

  optim.sgd(JdJ, x, state)

  table.insert(evaluations, Jx)

end

Store intermediate function evaluations

Add support for stochastic gradient descent

https://github.com/facebook/iTorch
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Torch7 maintained by Ronan, Clément, Koray and Soumith.

sgdtime = torch.Tensor(time)

sgdevaluations = torch.Tensor(evaluations)

We can now plot our graphs. A first simple approach is to use gnuplot.plot(x, y) . Here we precede it
with gnuplot.figure()  to make sure plots are on different figures.

require 'gnuplot'

gnuplot.figure(1)

gnuplot.title('CG loss minimisation over time')

gnuplot.plot(cgtime, cgevaluations)

gnuplot.figure(2)

gnuplot.title('SGD loss minimisation over time')

gnuplot.plot(sgdtime, sgdevaluations)

A more advanced way, which plots everything on the same graph would be the following. Here we save
everything in a PNG file.

gnuplot.pngfigure('plot.png')

gnuplot.plot(

   {'CG',  cgtime,  cgevaluations,  '-'},

   {'SGD', sgdtime, sgdevaluations, '-'})

gnuplot.xlabel('time (s)')

gnuplot.ylabel('J(x)')

gnuplot.plotflush()

← Prev

Final plot
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