
Groupware: Communication, Collaboration and Coordination - 1 -

Groupware - Communication, Collaboration, Coordination

Executive Summary

Messaging Shared
Database

Development
Framework

&225',1$7,21

E-Mail Conferencing

Workflow

&20081,&$7,21 &2//$%25$7,21

Group
Infrastructure

[<img

src=
"circle4.gif">]

In many ways, groupware defies
definition. Nonetheless, this software
category has captured the attention and
imagination of Information Technology
(IT) professionals, line of business
managers and end users, not to
mention software suppliers. While most
businesses have not developed a clear
definition of groupware, they are keenly
aware that leveraging the knowledge of
employees and trading partners is the
key to survival and success.
Furthermore, businesses know that a
clear competitive advantage lies with
those who can effectively manage and
exploit their intellectual assets.

Most definitions of groupware tend to focus on singular technologies with relatively
narrow design centers. Not surprisingly, suppliers of products centered around
communication -- "pushing" information out into an organization -- view messaging as
the core technology for groupware. Likewise, suppliers of products centered around
collaboration -- sharing information and building "shared understanding" -- tend to
view computer conferencing and shared databases as central to groupware. Those
with products aimed at assisting individuals and groups in the coordination of complex
tasks involving a rich mix of delegation, sequential sign-offs, etc., are apt to view
application development tools that support task and workflow automation as the sine
qua non of groupware. It's because groupware is at the convergence of what were
previously considered independent technologies (messaging, conferencing, workflow,
etc.) that there is so much confusion about its definition and scope.

As obvious as it may seem, if we start from a belief that groupware should help
individuals work together in a qualitatively better way, we find that groupware
represents an integration of these technologies. This book uses a simple framework
for group work, based on three categories:

Communication - rich electronic messaging;

Collaboration - facilitating a rich, shared, virtual workspace; and

Coordination - adding the structure of business processes to communication and
collaboration, so as to implement an enterprise's policies.

Through closer examination we will determine the conditions under which each
technology model breaks down when used by itself. From this we learn that group
applications require rich combinations of technologies. Furthermore, what makes a

SS 1997

Groupware: Communication, Collaboration and Coordination - 2 -

groupware platform powerful is its ability to support the dynamic movement between
and through these three modes of group work: communication, collaboration and
coordination.

Thus, groupware is not a laundry list of features and functionality, but is instead a
platform that simply and elegantly mirrors this convergence. A groupware platform,
therefore, is represented by the integration of three primary technologies:

An object store in which corporate knowledge -- messages, documents, forms,
memos, reports -- can be housed and managed.

A distribution and access model that allows users to easily locate and
disseminate information.

An application development framework that leverages the native underlying
services of the object store and distribution/access model.

Of course, a groupware infrastructure must take into account the general
requirements of workgroup environments. Specifically, these include:

Integration with external resources. The point of origin for workgroup
information is often external to the groupware environment (i.e., desktop
productivity tools, relational databases, etc.).

Platform independence. While groupware applications often begin as
departmental implementations, many eventually result in company-wide
deployment. Platform independence is critical to ensuring universal use and
investment protection.

Mobility. A groupware infrastructure must be capable of supporting many
geographically dispersed sites, including home, laptop, and notebook computers.

Inter-enterprise applications. As businesses begin to rely on customers and
trading partners as essential players in the automation of business processes, the
ability to seamlessly extend the application -- from the start or added as an
afterthought -- is an important part of a groupware infrastructure.

No business process application can be written that fully anticipates every situation.
No matter how many exceptions and special cases are accounted for, people will
discover new needs as they explore an application's depths and as new business
situations present themselves. Thus, we conclude that any system designed to
create, manage and leverage corporate knowledge is, by definition, of enterprise
scale, and therefore must meet these criteria:

It must support the full breadth of client, network and server operating systems.

It must support mobile and remote workers.

It must support seamless inter-enterprise interactivity

A groupware system that is architecturally correct in the sense that it supports the
convergence of communication, collaboration and coordination is nevertheless
doomed to failure on an enterprise scale if it does not also deal with the pragmatic
realities of nomadic workers and inter-enterprise communication.

Updated: 07.11.95 22:10:00

SS 1997

Groupware: Communication, Collaboration and Coordination - 3 -

Groupware - Communication, Collaboration, Coordination

Introduction

Knowledge is the only enduring asset of an institution. The ability to capture and
manage that knowledge is critical to the survival and success of any organization,
large or small. A category of software called groupware has emerged as an important
technology that enables companies to create, share and leverage corporate
knowledge. The implementation of a groupware infrastructure is the challenge that
Information Technology (IT) executives face as users demand a broad compendium
of groupware services. In fact, successful groupware implementations depend upon
both the availability of the enabling technologies and the commitment of IT
management to implement the necessary organizational and system infrastructure.
Successful IT organizations will develop this infrastructure on a schedule that
matches the oncoming demand of end users.

The term "groupware" is much used, little understood, and frequently the source of
confusion and skepticism. This regrettable state of affairs is the symptom of two
underlying tendencies. First, suppliers, users and observers have naturally tended to
consider groupware as the sum of its applications, with little thought to appropriate or
optimal technology and infrastructure. Therefore, it has been difficult to derive a
consistent understanding of groupware technology from applications as disparate as
electronic mail (e-mail), group calendaring/scheduling, forms routing, workflow
automation, computer conferencing, bulletin boards and video conferencing systems,
among others. In many cases, applications not originally designed as groupware have
been retrofitted or stretched beyond their design center to meet a business need.

Secondly, discussions of groupware tend to focus around singular technologies with
relatively narrow design centers. Suppliers have typically built products based on the
technological roots most familiar to them. Not surprisingly, suppliers whose products
center around communication -- pushing information out into an organization -- view
messaging as the core technology for groupware. Likewise, suppliers whose products
center around collaboration -- shared information and building "shared understanding"
-- likely view computer conferencing and shared databases as central to groupware.
Those with products aimed at assisting individuals and groups in the coordination of
complex tasks involving a rich mix of delegation, sequential sign-offs, etc., view
application development frameworks that support task and workflow automation as
the center of groupware.

In truth, a complete groupware infrastructure not only supports these three modes of
group work, but creates synergy among them, producing a whole greater than the
sum of its parts.

This paper examines these essential dimensions of groupware -- communication,
collaboration and coordination. It discusses the stand-alone technologies that have
been used to support them -- messaging, shared databases, and workflow automation
-- and examines the conditions under which each of these models breaks down when
extended beyond its design center. The paper then describes how a complete
groupware infrastructure represents the convergence of these otherwise distinct
technologies.

Debates about infrastructure can sometimes become dogmatic, and often veer
towards architectural purity at the risk of ignoring the practical realities of how
individuals, groups and organizations actually use applications to capture, manage
and leverage enterprise knowledge. In fact, the short history of groupware
applications has shown that users themselves will stretch a technology to meet

SS 1997

Groupware: Communication, Collaboration and Coordination - 4 -

altogether different needs than those for which the application was originally intended.
In this paper, we endeavor to balance the weight of architectural requirements with an
appreciation for the practical issues of how groups really work. The reality that users
themselves will extend technology in unanticipated ways is actually one of the most
important elements of a groupware infrastructure: it must be flexible enough to allow
users to bend and extend it to their specific needs, rather than rely on solutions as
defined by others.

It will become apparent that there is a natural synergy between communication,
collaboration and coordination in the evolution of groups and the technology that
supports them. Specifically, messaging and shared database technologies are the
fundamental basis for these three modes of group work and the integration among
them. Accessible through application development tools and by end users alike, a
shared database architecture provides workgroup members with the ability to design,
manage and maintain group processes. Likewise, messaging provides a ubiquitous
store-and-forward transport as the fundamental means for communication between
people and applications. This dual architecture will be critical to the flexibility and
customizability of the environment.

This paper also addresses the practical issues of group work: the need to support
remote and mobile workgroup members, heterogeneous client, server and network
operating environments, as well as the growing trends toward inter-enterprise
implementations between customers and trading partners.

It is important to note that this paper does not purport to serve as the final word on the
subject of groupware applications. It has been groupware's dynamic and evolving
nature that has contributed to the lack of consensus on its definition in the first place,
and there is no reason to expect the pace of change in the use of groupware to slow
anytime soon.

However, while users will continue to apply groupware in unanticipated and innovative
ways, the architectural underpinnings of the groupware infrastructure -- the focus of
this paper -- are likely to remain constant into the foreseeable future. The paper
concludes by offering architectural guidelines for building a groupware infrastructure.

Updated: 02.11.95 18:25:52

Groupware - Communication, Collaboration, Coordination

Defining Groupware

SS 1997

Groupware: Communication, Collaboration and Coordination - 5 -

Messaging Shared
Database

Development
Framework

&225',1$7,21

E-Mail Conferencing

Workflow

&20081,&$7,21 &2//$%25$7,21

Group
Infrastructure

[<img src=
"circle4.gif">]

Ask ten people -- CIOs, IT managers,
end users, and software vendors -- for
a definition of groupware, and you will
no doubt receive ten different answers.
The only common ground that most
respondents will share is that they are
not exactly sure where groupware
begins and ends.

Definitions of groupware that go beyond "software that supports group work" usually
focus on a single aspect of group work and a key application that supports that kind of
work. Most users' experience with groupware has been piecemeal: they have used
one or several groupware applications, but have no context in which to place them.
Thus, users of e-mail and mail-enabled applications are naturally inclined to view
groupware through the lens of electronic messaging. Users of forms routing products
are naturally inclined to think of groupware as a function of workflow automation. And
users of electronic conferencing systems or the World Wide Web are apt to consider
shared access to information the root of groupware.

These different views arise because groupware, in fact, has its roots in three distinct,
but increasingly overlapping, application areas: electronic messaging, information
management, and workflow/process automation. Each of these technology domains
has given rise to a number of popular groupware applications: e-mail, electronic
conferencing and bulletin boards, and forms routing and tracking. The most prolific of
these is electronic messaging; for this reason it is often viewed as the cornerstone of
groupware.

However, if we step back from these myopic views of tasks performed within the
workplace and take a broader view of how people really work, we find people moving
from one of these work situations to another, changing modes of work, changing
workgroup affiliation, juggling sets of only loosely related tasks, all of which require
action during the workday, and few of which come to completion -- or even a
recognizably stable state -- by the end of the day or the end of the week. We will find
people picking up the phone to ask a quick clarifying question -- and often find that
question left unanswered when the call can't be completed. We discover task forces
forming and closing down -- new groups meeting in conference rooms to determine
how they will work together and more established groups barely having to finish
sentences yet communicating their ideas in phrases and gestures.

When we look at groups in this light, it is clear that groupware can't be defined as a
single technology or a collection of applications. Groups' needs change over time, and
every group is different from others. In order for a groupware system to be effective, it
must be capable of supporting all modes of group work. Specifically:

Electronic messaging is an effective tool for notification and a clear match to most
communications needs. Messaging is such a powerful solution that users have
begun to employ message stores as persistent data stores. Further, users have

SS 1997

Groupware: Communication, Collaboration and Coordination - 6 -

stretched its functionality by using mailing lists to support group meetings, or the
co-creation and revision of common documents.

However, bulletin boards and computer conferencing systems (shared
databases) are used to provide a much more coherent, common view of group
interaction, and these groupware applications have become commonplace in
many organizations.

Yet, systems where most information for groups is stored in databases start to
suffer from the inherently passive nature of conventional database technologies.
Each participant in a group has to take responsibility for finding information and
scheduling their actions based on changes to that information. Thus, the need for
a coordinated use of messaging for notification and database technology for
shared information has emerged. The integration of messaging and shared
databases in a single solution has evolved as a result.

A workflow system based simply on forms which are routed from person to
person again leaves each person in the group on their own, with no overview of
the process. On the other hand, a workflow system based on a database storing
the key materials and their status can provide full context for anyone who needs
it, using messaging primarily for notification. Here, groupware represents the
convergence of messaging, information management and workflow automation by
meeting the evolving needs of groups to create, share and leverage corporate
knowledge.

Looking at groupware from a more organic perspective, it's clear that information and
knowledge are shared in support of three primary functions: communication,
collaboration, and coordination. There are two dimensions that characterize the role
that technology plays in facilitating group work: the degree of structure imposed by
technology, and the passive/active role that technology plays in guiding the group
work.

The first dimension deals with the varying degree of structure required in group
work. This may range from situations where information is distributed in an ad hoc
fashion (i.e., sending an e-mail message to a group) to more highly structured
processes where the steps are pre-defined and deterministic, such as routing a
purchase order requisition.

The second dimension addresses the passive/active relationship between the
technology medium and the individual or workgroup. That is, passive applications
leave control in the hands of the user or the workgroup, while active applications
play a more proactive or directive role by controlling the flow of group work. For
example, a shared database system that allows users to navigate a discussion
thread is passive, whereas a system that actively monitors a process and notifies
the user of an event is active.

The diagram below is useful in understanding how various groupware applications
correlate to these dimensions, as well as their relationship to each other.
Communication, collaboration and coordination systems each have their own unique
characteristics. Understanding the design point of each area is important in identifying
the criteria for technologies and applications in each space. Taken together, these
criteria form the basis for evaluating a comprehensive groupware architecture --
seamless support for communication, collaboration and coordination at any time, in
any place.

Our definition of groupware is simply this -- tools to enable people to work together
through communication, collaboration and coordination. In fact, what makes a
groupware platform powerful is its ability to support the dynamic movement between

SS 1997

Groupware: Communication, Collaboration and Coordination - 7 -

communication, collaboration and coordination. The following chapters examine these
areas in terms of their group requirements and the technologies that support them.

Categories of Groupware

Communication

Coordination

Passive Active

E-mail

Reference Publishing

Forms Routing

Calendar & Scheduling

Discussion D-bases

Workflow Automation

Collaboration

Low

Medium

High

Technology Medium

Structure

Updated: 07.11.95 22:10:01

Groupware - Communication, Collaboration, Coordination

Communication

Messaging

E-Mail

&20081,&$7,21

[<img src=
"circle1.gif">]

Communication is the transmission of
knowledge. In a business enterprise,
colleagues communicate with each
other in all sorts of ways: in formal
meetings and presentations, through
interoffice memos, over the telephone,
and in informal hallway meetings. The
information and knowledge imparted in
these interactions takes the form of
both verbal (written and spoken) and
visual (images, drawings, body
language) communication.

The role of a communication system is that of a passive electronic medium for
transmitting information. Variables such as time, place and number of participants
determine the most appropriate communication system in any given situation. Same
time, same place, one-to-one interaction represents the simplest form of
communication. When the combinations of time, place and number of participants

SS 1997

Groupware: Communication, Collaboration and Coordination - 8 -

increase, complexity is introduced. For better or worse, it is the most complex
combination of dimensions through which most corporate knowledge is created,
shared and leveraged.

Increasingly, individuals find themselves relying on electronic mail for interpersonal
communication within and beyond the enterprise. While e-mail has improved the
efficiency and accuracy of communication for some, it poses challenges to others,
including users and network and systems administrators.

Updated: 07.11.95 22:09:59

Groupware - Communication, Collaboration, Coordination

Electronic Messaging: A Technology for Communication

Electronic messaging is the store-and-forward transport of electronic objects among
people, among people and applications, and among applications. The design point of
electronic messaging is the asynchronous transmission of messages from one place
to another. Messages can contain either simple or complex information, and they can
be delivered to specific individuals or groups. Messaging supports different-time,
different-place information sharing by virtue of its store-and-forward, or "push," model
of transmitting or moving information. That is, information is "pushed" from the sender
to the recipient.

Electronic messaging's store-and-forward transport system distinguishes it from other
communication technologies. The store-and-forward transport is used to move, or
"push" an object from one point to another along a number of intermediate points (i.e.,
from post office to post office) until delivered to the ultimate recipient. Messaging
provides asynchronous connectivity because the sender and receiver need not be
synchronized in time. Therein lies the real advantage of store-and-forward
processing.

Messaging is credited with revolutionizing one-to-many communication. Naturally, this
quickly leads to many-to-many communication. As depicted by the "web" of
point-to-point paths in the diagram below, the use of e-mail for many-to-many
communication has increased e-mail volume exponentially. As we shall see, this
transition in communication is not nearly as simple a move for store-and-forward
messaging.

SS 1997

Groupware: Communication, Collaboration and Coordination - 9 -

Forms of Communication

Many-to-One Many-to-Many

One-to-One One-to-Many

Updated: 02.11.95 17:34:54

Groupware - Communication, Collaboration, Coordination

The Message Store

Traditionally, the message store has served as the temporary holding place for
messages as they are being routed to their destination. Over time, however, as
messaging became widely used for one-to-many and many-to-many communication,
the message store has become the de facto "container" for large quantities of
corporate information. That is, the temporary store designed for ad hoc messages has
been used as a semi-permanent store not only for short-lived memos, but also for
documents with an indefinite life cycle.

Because the original design center of a message store is as a temporary store, it has
been optimized for delivery and retrieval of messages. This model assumes that the
documents and objects that are routed using the e-mail system will be stored and
managed elsewhere (e.g., the hard drive of a desktop computer, or a LAN-based file
server) by the senders and recipients. The message store was not designed for the
persistent storage and management of information.

Nonetheless, messaging systems have become the resting place for more and more
corporate information. As a result, users and suppliers have explored ways to
manage, manipulate and further automate the use of this information through various
forms of foldering, rules-based processing and application development. Messaging
APIs (Application Programming Interfaces) have emerged as the way to
programmatically use the messaging system to move objects from a user to an
application, from an application to a user, and among applications. Examples of this
include mail-enabled desktop applications, group calendaring and scheduling, and
forms routing applications. Messaging systems have become a virtual
communications "hub," resulting in a significant information management problem that

SS 1997

Groupware: Communication, Collaboration and Coordination - 10 -

messaging systems simply were not designed to handle.

Despite the immense success of messaging as a communications vehicle, users are
now beginning to complain that the technology is becoming increasingly unwieldy.
There are two aspects of messaging that make it challenging for enterprise
information management. First, users are unable to manage the ever-growing volume
of messages. Second, the lack of sophisticated information management tools for
manipulating the information contained in e-mail messages is becoming a larger and
larger problem.

E-mail is the victim of its own success. Its ease of use and widespread adoption has
led to an explosion of e-mail traffic. This results in users losing information, and
accumulating large backlogs of unanswered messages. Valuable time is spent
reading and sifting through messages of only marginal relevance. Some users have
become so overwhelmed with the avalanche of daily e-mail messages that they have
begun to consciously ignore many messages altogether! This unfortunate situation
has a negative impact on both individual and corporate productivity, resulting in lost
information and reduced customer responsiveness, and ultimately affecting the
bottom line.

Furthermore, the problem will only get worse. The increasing capability of e-mail
systems (e.g., the ability to send a 50 megabyte file to 10 or more users) will further
exacerbate the problem. The graph below displays the relationship between message
volume and productivity. Initially, there is a positive impact on productivity because
people are getting the information they need faster. However, as the volume and
complexity of information increases, users reach the point of diminishing returns in
productivity. Eventually, this increased volume of information can have a negative
impact on individual productivity, primarily because the information we need is
co-mingled with the information others think we need or want us to have. In response
to this, features such as rules, filters and hierarchical folders have been implemented
to assist us with e-mail information management. At this point, any increase in
productivity gained from getting information faster is lost in trying to sort through and
access the information that is relevant.

SS 1997

Groupware: Communication, Collaboration and Coordination - 11 -

Productivity and Information Overload

Point of
Diminishing

Returns

Time

Capability

E-mail
Volume

Productivity

This phenomenon of "information overload" and its impact on productivity was
recognized some time ago by the operations research community. In order to better
understand this, it is important to distinguish between the benefits derived by both
senders and recipients of e-mail. As senders, e-mail accelerates our ability to
distribute information. As recipients, we benefit by receiving information more quickly.
If the rate of information delivery exceeds our ability to absorb and manage it, we
reach the point of diminishing returns. In other words, e-mail effectively solves the
distribution problem for the sender, but ultimately creates an information management
quagmire for its recipient.

Consider this example. A manager sends an e-mail message to a dozen people
requesting feedback on a project. If all the recipients send all of their replies to all of
the original recipients, the number of messages easily multiplies beyond the ability of
a single recipient to track and manage the message thread. Moreover, there is no
mechanism to help the participants identify which replies are in response to which
messages. The greater the degree of interaction and the greater the number of
participants, the more difficult it is to manage the dynamics of who said what in
response to whom. This represents information overload and loss of the context of the
information itself.

Getting to the root of this problem requires a closer look at the requirements of
many-to-many communication and the need for an information management model.
Many of the problems associated with overburdened messaging systems can be
traced to their essential characteristic: support for unstructured communications
through a "push" model. That is, the model, while effective in supporting unstructured
communication, fails to effectively support more complex levels of interaction. In
contrast, technologies designed to support the complex interactions of many-to-many
collaboration use an entirely different model of information distribution and
management.

Updated: 31.10.95 21:44:20

SS 1997

Groupware: Communication, Collaboration and Coordination - 12 -

Groupware - Communication, Collaboration, Coordination

Conclusions

So far, we have isolated the area of communication in order to better understand its
relation to other aspects of groupware technology. We've determined that e-mail is an
effective medium for one-to-one and one-to-many forms of communication. Due to the
lack of structure and volume of information being pushed, it appears that
many-to-many communication quickly becomes unmanageable in this environment.

In determining the appropriate technology for resolving these issues, it is important to
distinguish between information delivery and information management. As a
store-and-forward transport, messaging is effective for information delivery. In order to
resolve the information management problem, we must look to other technologies.

Updated: 31.10.95 21:45:18

Groupware - Communication, Collaboration, Coordination

Collaboration

[<img

Messaging Shared
Database

E-Mail Conferencing

&20081,&$7,21 &2//$%25$7,21

src=
"circle2.gif">]

Collaboration relies on a shared space.
It may be a room, a blackboard, a
napkin, or a shared on-line space.
Shared space serves as a touchstone
for the act of collaboration, and it is
essential as a medium to manage the
ambiguity inherent in human
interaction. In effect, these shared
spaces are the collaborative tools that
provide a context in which the whole of
the relationship is greater than the sum
of the individual participants' expertise.

Collaboration can be between two people, or can take the form of many-to-many
information sharing. Activities such as problem solving, brainstorming, identifying and
locating data that has been created by others are all forms of collaboration.

As in communication, one of the most important contributions of technology to the
area of collaboration is the elimination of the constraints of time and space.
Face-to-face meetings are common in cases where group members are able to share
the same time and same place. Telephones have removed many of the barriers of
location, and voice mail has removed the barrier of time as well. In fact, experience
shows that once groups have incorporated collaborative technologies into their
environment, they are able to effectively minimize the number of face-to-face
meetings that would otherwise be necessary to exchange information and ideas. This

SS 1997

Groupware: Communication, Collaboration and Coordination - 13 -

allows groups to optimize face-to-face meetings by limiting them to activities where
this kind of interchange is most useful -- getting closure on issues, reaching
consensus, etc.

Collaboration over Time and Space Variables

Same Different

Face-to-Face
Meetings

Group Conferencing
Discussions Databases

Same

Different

TIME

Video/Audio
Conferencing

SPACE

For the remainder of this chapter, we will focus on asynchronous collaboration
(different time and place) because of its complexity and potential for improving work
practices by allowing people to work more efficiently in the same time and place. Our
primary goal is to define the role that shared database technology and shared
information play in collaboration, starting with how the technology addresses the limits
of e-mail for many-to-many interaction, and then continuing on to other forms of
collaboration.

Updated: 07.11.95 22:10:06

Groupware - Communication, Collaboration, Coordination

Shared Databases: A Technology for Collaboration

In the previous chapter, we determined that messaging is a useful, general-purpose
communication medium, adaptable through mailing-list capabilities to some group
situations, but not really tuned to the needs of many-to-many interaction. However,
the general availability and asynchronous nature of messaging has resulted in its use
as a medium for collaboration. While this may appear to be a logical extension of
messaging, the model falls short in many respects.

Messaging systems are primarily concerned with tracking files as messages in
relation to senders and recipients. This makes it difficult for users to track information
by topic. In addition, maintaining the context for discussion threads taking place over
a series of e-mail messages is difficult due to the problems of tracking who responded
to what and in which order. In many ways, this has prompted the extension of e-mail
systems to support a shared on-line discussion space which introduces structure in
the form of roles, access control, and conversational structure available to the user.

Shared database technology has evolved in an altogether different domain from

SS 1997

Groupware: Communication, Collaboration and Coordination - 14 -

messaging, its communication-centric cousin. In fact, shared databases can be traced
back to the first timesharing systems found on early mainframes. Shared databases
facilitate collaborative interaction by providing a virtual common workspace with a
group-centered interface that allows participants to share information and ideas. In
contrast to messaging systems which use a sending or push model, shared database
technology supports a pull model for information sharing. The pull model allows users
to retrieve information as needed. Users have more control over when they join
various group discussions. Users are no longer held hostage to an e-mail schedule,
but rather assume the responsibility to retrieve information (or to ignore it!) at their
own discretion.

Shared databases also differ from messaging systems in that they not only house an
entire set of messages, but also discussion items, supporting documents, arguments
-- that is, knowledge -- in one place, viewable through a common structure, and
providing a consistent record of what has transpired. This facilitates common
understanding, and is fundamental to enabling collaborators to collectively grasp key
concepts and issues. Furthermore, where a shared view is provided, multiple forms of
presentation are important because individuals will want private, tailored views to
support their own specialized tasks. These multiple representations may satisfy the
need of a single participant to view information by date, by author, by document type,
etc. They also support the need to present information to different people, for
example, by customer name or market segment for the group in marketing and by
part number or product name for engineering. Each form represents a different lens
through which to view the collaborative task while placing information in various
contexts. For these reasons, and because work changes over time, the availability of
lightweight, end user design tools is important. They provide collaborators with the
ability to customize and modify information; otherwise, the system will fall into disuse
and fail.

The availability of tools, and the ease with which these applications can be developed
or customized, is a key to the long term success of systems implementations.
Primarily, the ability to customize user interfaces, the granularity with which data and
information can be viewed and manipulated, as well as the ability to define the many
variables associated with a system, are all important attributes. Commercial products
that deliver a specific application, for example group conferencing, without providing
access to the underlying database platform, are limited in this respect. While
out-of-the-box systems like this may fill a specific short term need, they lack the
flexibility and customizability needed to solve a wide variety of collaborative problems.
Products that expose the underlying database platform and offer customizable tools
and applications provide much more flexibility. To illustrate, we'll take the above
example further. The marketing group may realize that it now needs to analyze the
customer information by geographic region, in addition to market segment. To
accomplish this, a new field for capturing information on region must be added to the
existing database. Only a collaborative tool with access to an underlying database
that allows the information in a document to be captured at the field level can be
modified to easily support such specific (and changing) group requirements.

Updated: 31.10.95 21:54:58

Groupware - Communication, Collaboration, Coordination

Collaborative Applications

In developing the requirements for a flexible and customizable environment for
collaboration, it is important to distinguish between the technology and the

SS 1997

Groupware: Communication, Collaboration and Coordination - 15 -

applications implemented with the technology. A flexible, shared database at the core
of a groupware system provides the platform on which a wide range of applications
can be developed. These may vary from simple discussion databases to rich
knowledge bases that support, for example, customer assistance systems and team
responses to questions.

Electronic Conferencing

Electronic conferencing systems (discussion databases, public forums) facilitate
asynchronous collaboration by introducing a measure of structure that passively
facilitates the process of sharing, organizing and navigating information through an
interactive electronic space that serves as a common repository for contributions.

Problem-solving work, for example, comprises such general-purpose tasks as
brainstorming to generate ideas, structuring those ideas, and then evaluating them.
Electronic conferencing systems use shared database technology to provide the
structure necessary to facilitate these steps while allowing any time/any place
participation. In electronic conferencing, messages are placed in one shared
database, as opposed to the individual mailboxes of a messaging system. All
participants can see new messages and respond accordingly. A moderator can step
in and start new topics of discussion to shift the group from one stage of the process
to the next.

Leveraging Shared Databases for Other Applications

A structured database of messages can be used to provide common understanding of
a discussion. Other data types can also be stored in structured form to assist groups
that are working in a particular application domain. For example, in the case of group
authoring, a group that is jointly writing a document should share a common draft of
the document. To support their efforts to revise and comment on each other's
revisions, in a database format that document can be stored as a collection of
paragraphs, chapters and sections. These can be viewed in a number of ways:
linearly to look like an ordinary word processing document, in outline view, in "revision
mode," in old and new versions, etc. Each paragraph can serve as a "topic" for a
discussion, and conversations can be structured around the controversial issues in
the paper, rather than around an arbitrary set of "topic notes" typically found in an
on-line forum.

This use of shared databases makes the content of any application much more useful
to a group that is trying to develop material. Group-enabled applications such as word
processors, spreadsheets, etc. that can store their information in databases rather
than in unstructured files become much more powerful. Once that information is
captured in a shared database, the information can be viewed natively through the
application or through a more generic groupware interface that facilitates discussion,
debate and decision making.

Updated: 02.11.95 18:48:24

Groupware - Communication, Collaboration, Coordination

Reference Publishing Systems

Reference publishing systems -- systems for publishing and widely disseminating
documents -- are considered groupware because they facilitate information sharing.
Information is published electronically by a provider and read by many consumers.
For any given topic, this represents a one-to-many broadcast of information -- the

SS 1997

Groupware: Communication, Collaboration and Coordination - 16 -

accumulated knowledge of past experience as captured in documents such as
competitive reports, forecasts and reviews, policies and procedures manuals, training
materials, and newsletters and periodicals.

In order to better understand their roles in enterprise environments, it is useful to
compare and contrast reference publishing with collaborative applications. Both are
similar in structure -- both systems use the pull model to allow users to navigate and
browse large quantities of public or corporate information. However, collaborative
applications are interactive, whereas reference publishing applications are one-way.

In fact, reference publishing is typically so one-way that it's debatable whether to call it
a collaborative application or a communication application. It is a powerful
one-to-many communication tool -- with a weak distribution model. While typical
implementations are one-way, support for two-way interaction can greatly enhance
the usefulness of reference publishing systems.

A reference publishing system is typically a distributed database (or at least a
distributed file system) containing "finished" documents. When rich distributed
database technology underlies the publishing system, simply offering additional
integrated communication and collaboration facilities can transform it into a dynamic
environment. This environment can support learning and building of a common vision,
rather than simply an information search and retrieval environment for personal use.
For example, a team might use a discussion database to collaborate on the scope,
direction and details of a new product strategy. The result of this collaboration is a
strategy document, which in turn is stored in a reference publishing system. The
document is now made available for all appropriate audiences, both internal and
external. Readers (e.g., customers, financial and industry analysts) of the final
document may have their own responses, recommendations and predictions. Thus
the company might include a link between the strategy document in the reference
publishing system and a discussion database, to which all readers (as well as the
original document authors) can contribute and respond. Furthermore, contributors to
the discussion database can include pointers to documents in other reference
publishing systems as part of their commentary.

Updated: 02.11.95 18:49:02

Groupware - Communication, Collaboration, Coordination

The Passive Nature of Shared Databases

The model of shared databases for storing and maintaining on-line information
provides many advantages over a model based on messaging. Primarily, information
is pulled as needed by the consumer, thereby allowing for greater control over
information received and consumed, as opposed to control over how information is
sent, as in the case with messaging. However, when this technology is used without
some notification or messaging support, it also suffers from limitations. Because
shared databases depend on the consumer to seek out information, they become
inherently passive. Missing from shared databases is a facility that easily notifies
users of the addition or modification of information. For example, consider a reference
library that contains standard operating procedures: as procedures are updated in the
database, notification of these changes is important.

Just as an avalanche of e-mail inexorably leads to information overload, an explosion
of dozens, hundreds or even thousands of shared databases eventually presents the
user with an overpopulated and mind-numbing environment. A similar phenomenon

SS 1997

Groupware: Communication, Collaboration and Coordination - 17 -

occurs on the World Wide Web, with the appearance of thousands of new home
pages every month. The result is that large quantities of information are stored in
databases. However, important, relevant, or frequently changing information does not
find its own way to the interested user.

Updated: 31.10.95 22:21:41

Groupware - Communication, Collaboration, Coordination

The World Wide Web as a Collaboration Tool

The World Wide Web (WWW, or Web) has rapidly evolved into a significant network
paradigm for intra- and inter-enterprise publishing and for other collaborative
applications. Fundamentally, the Web is a set of protocols which operate over the
Internet (as well as private, internal networks). These protocols serve as the basis for
a client/server environment that supports information sharing and, more recently,
transaction processing and electronic commerce.

This rapid evolution has led many organizations to consider the Web as the basis for
a much broader range of applications, many of which fall into the category of
groupware as we have defined it and, most specifically, in the domain of collaboration.

The Web Infrastructure

There are three essential technologies which define the World Wide Web today
because they define the communication between a Web client and a Web server
connected over a TCP/IP network:

HTTP, Hyper Text Transport Protocol, governs communications between a Web
client and a Web server.

HTML, Hypertext Markup Language, is the document format for Web documents
or "pages." Traditional word processors use a proprietary method for representing
document attributes such as font, pitch, etc. HTML uses directives instead to
specify format, leaving the actual formatting to the client. HTML is a subset of
SGML (Standard Generalized Markup Language), providing codes used to format
hypertext linking between documents.

URL, Uniform Resource Locator, is a pointer to a resource on the Internet. It
serves as the global addressing scheme for pages stored on Web servers. The
URL contains the name of the Web server (e.g., WWW.Lotus.Com) and possible
extensions that define a specific Web page or other information to be used by the
Web server.

While many people today think of the Web through a lens focused on products, there
is no doubt that this will rapidly change, and that we will view the Web as a set of
capabilities implemented through specific protocols that are supported by a wide
range of products. Although Web browsers as we know them today will continue to be
used, we can fully expect Web browsing functions to be directly incorporated into
other programs.

A "Web browser" will be any program that implements Web client protocols, and a
"Web server" will be any program that implements Web server protocols. Soon, we
will be in an environment where applications such as mail systems use Web protocols
to access database servers that also happen to implement Web protocols. Hence, it

SS 1997

Groupware: Communication, Collaboration and Coordination - 18 -

will be the protocols that both determine and limit what can be done on the Web. The
evolution of Web protocols (specifically HTTP and HTML) has matured through two
phases, and is now entering a third phase.

Phase One -- Information Publishing. The first version of HTML supported only
information publishing through a hypertext model. A document segment could point to
other document segments in different documents on different servers so that users
could move through an information "space" in a non-linear fashion.

Anyone could create Web pages in HTML and store these on an HTTP server, and
anyone with a browser could use HTTP to access the Web page. Web developers
quickly realized that there were tasks that could not be accomplished with the simple
Web protocols, so a "trap door" or application exit was developed called the common
gateway interface, or CGI. A URL, in addition to referencing a specific page on a Web
server, could also reference a program to be invoked on the Web server through the
CGI. One thing a CGI program can do is dynamically create Web pages. This opened
a whole new world for the Web because "dynamic publishing" could be supported in
addition to classic electronic publishing. Let's consider two simple examples to see
the difference.

In the first case, let's consider a Web server that stores research papers and makes
them electronically available to browsers worldwide. Once the papers are stored on
the server, they don't change. An index page may be rewritten every time papers are
added to the server, but the papers themselves do not change. It is a static Web site.

Now let's consider a firm that carefully tracks companies in a specific industry (e.g.,
airlines) and wants to make this information available to subscribers on the Web.
Some of the information is static and, once defined, can be stored in standard Web
pages and accessed via Web links. But the publisher might also want to make
real-time news a part of the service. Information about a specific airline might include
standard corporate overviews, but also late-breaking news. If a subscriber selects
"news" from one of the predefined pages, this might invoke a CGI program that
accesses a news feed service, gathers up information about that airline, formats a
Web page and transmits the Web page back to the browser via HTTP. This Web site
is supporting dynamic publishing.

Much of the high value interaction on the Web comes from pages dynamically created
via CGI programs. Hence, the gating factor in building this class of applications is not
what is in HTML and HTTP, but rather the kind of application development
environment that is available for writing CGI programs that interact with external data
sources. This is why we are now beginning to see a new generation of applications
development tools for the Web. It stands to reason that rich application development
environments that already support collaborative applications will also support Web
protocols.

Phase Two -- Fielded Forms. Let's take the airline example a step further. Real
users would probably like to be fairly specific about the news items they are seeking
(e.g., news on the airline for just the past 24 hours, or just articles that contain the
words "airfare" and "international"). We've now moved from dynamic publishing to
interactive queries. In order to support this requirement, we need to present a page to
the user in which specific search terms can be entered, for example. The extension of
HTML to support "fielded forms" defined the second major step in the evolution of the
Web. Once data is entered into a field, a URL is sent back to the server that invokes a
CGI program that extracts the data from the form, processes the information, and
dynamically creates a page and sends it back to the user.

Not only do fielded forms enable the Web to support interactive query applications,
they also enable electronic commerce and transaction services (e.g., airline

SS 1997

Groupware: Communication, Collaboration and Coordination - 19 -

reservations systems, stock quoting services, retail catalogs and order forms,
customer support systems). The advantages of Web-based transaction processing to
the supplier are (1) worldwide connectivity through the Internet and (2) universal
support for any client machine that has a Web browser. While the Web may have
started as a collaborative system for information sharing via a publishing model, the
excitement around the Web today is very much about transaction systems and
electronic commerce -- domains outside of what is normally considered collaborative
computing. As we move toward this model of dynamic publishing, programming
beyond HTML via CGI is required, which leads to the next phase of evolution of the
World Wide Web.

Phase Three -- Programming Languages. The initial version of HTML specified how
a document should be formatted. Examined through a slightly different lens, however,
HTML was really a simple programming language. An HTML statement could, for
example, state that "when a user clicks the mouse on this hot spot, send the following
hot spot coordinates as a request to the appropriate Web server, to which the Web
server returns a URL." This is a simple program. It is the evolution of HTML that will
define the third phase of evolution for the Web.

Just as programming languages have evolved toward an object-oriented model to
support the demands of modern applications, HTML will also evolve toward an
object-oriented model. Browsers can include code that can interpret a program, and
Web pages can include programs. When a Web page is accessed and transmitted to
a requesting browser, the browser interprets the program and executes the requested
action (e.g., providing animation to an image). The emergence of Web-specific
languages dramatically extends the programmability and the extensibility of HTML
and, therefore, of browsers.

Constraints of the Web

The Web is evolving rapidly, and its boundaries and constraints are not easily
discernible this early in its lifecycle. Over time we will learn that, like every innovation,
there are boundaries that must be understood and respected. It is already clear where
we will begin to see some challenges in the near future.

What initially made the Web and Web browsers so attractive was the utter simplicity
of the technology and the resulting product. Web browsers were compact, easy to
implement and easy to use. Complexity will increase as new browsers grow in
functionality, including:

Support for multiple coding formats (e.g., Adobe Acrobat in addition to HTML).

Inclusion and support of multiple languages.

Support for a local file system (e.g., a local message store for a mail system
written for the Web), and its use for caching Web pages or storing replicas of data
on Web servers.

The addition of rich security features to browsers and better access control on
servers.

To be clear, this is not a gloom and doom forecast for the Web. To the contrary, the
Web has had and will have a profound effect on the information technology industry
and on society. However, by adding functionality to the Web we necessarily add
complexity.

The introduction of complexity, in turn, makes interoperability more difficult. The Web
today is truly open. Web servers and Web browsers are interoperable because the

SS 1997

Groupware: Communication, Collaboration and Coordination - 20 -

protocols are simple and uniformly implemented. Now that the Web has evolved from
a research project where concepts like profit and market share were non-issues to a
burgeoning market-driven industry, we are beginning to see proprietary extensions to
HTML, so that a particular vendor's Web server product works best with that vendor's
browser. This may have the negative effect of requiring users to implement multiple
browsers, perhaps using browser A because it works best with the user's stock
quoting service and browser B because it is optimized to work with the user's local
department store server. We will see complexity ratchet up yet further until the
inevitable "standards" wars are waged and resolved.

We will continue to see dramatic investment in the Web and associated technologies.
Web technology has evolved from collaboration (dynamic information publishing)
toward electronic commerce. While there will continue to be innovation in the
collaborative aspects of the Web, it's likely that the center of gravity will move more
toward electronic commerce. Groupware, also starting from a collaborative base, will
see its center of gravity move toward coordination applications, the subject of the next
chapter. Because of their respective evolutionary paths, we can expect to see far
more complementarity than overlap

Updated: 02.11.95 19:20:54

Groupware - Communication, Collaboration, Coordination

Conclusions

In examining the mix of communication and collaboration-based technologies the
following is clear:

The requirements of collaboration and communication are distinct. Therefore, it
follows that electronic messaging alone does not sufficiently facilitate the process
of collaboration. Database technology employs a "pull" model of information
distribution that engages users in the collaborative process.

Collaboration requires a system that combines these push and pull models, and
provides a robust framework for exploiting the many ways that users need to
communicate and collaborate.

A shared database is essential for common work, shared views and for
crystallizing information into organizational knowledge. One way to leverage the
integration of the push and pull models is through tools that support a coordinated
use of messaging and shared database technologies. These mirror the need for
groups to coordinate their work efforts -- both in the sense of sequencing their
activities and smoothing the transitions between different modes of work.

The third category of group work -- coordination -- is supported by both of these
technologies, as well as by tools that allow groups to "program" their combined use of
the two. That is the subject of the next chapter.

Updated: 31.10.95 22:34:18

Groupware - Communication, Collaboration, Coordination

SS 1997

Groupware: Communication, Collaboration and Coordination - 21 -

Coordination

Messaging Shared
Database

Development
Framework

&225',1$7,21

E-Mail Conferencing

Workflow

&20081,&$7,21 &2//$%25$7,21
4th

Generation
Messaging

Tracking
Database

Forms
Routing

[<img src=
"circle3.gif">]

Thus far, we have discussed how
groups of people communicate and
collaborate in order to share information
and leverage knowledge that helps
them perform their jobs more efficiently
and more effectively. What
characterizes much of this interaction is
its ad hoc and unstructured nature.
That is, people send each other e-mail
messages at their own discretion, and
they refer to shared resources when
the need exists. The activities occur on
an as-needed, dynamic basis. When
we think of collaboration, we think of
"brainstorming" sessions, co-authoring
a research paper, or other "we don't
really know where it's going to end up"
sorts of creative activities.

However, many business activities are much more structured in nature. Enterprises
do not expect people to "collaborate" on processing an expense report; rather, the
enterprise defines specific policies about how an expense report is to be routed
through an organization so that it is properly approved, is auditable and is secure.
Many people are involved, but the enterprise's policies specify, or even dictate, the
coordination required between these people to meet a defined objective. The
successful completion of a pre-defined business process depends on the coordination
of people in completing a set of structured tasks in a particular sequence and within
expected time constraints. To a great extent this has been the domain of workflow
automation systems -- a focus on highly structured business processes that exhibit
pre-defined, conditional workflows based on status and conditions. Whereas
collaboration is relatively passive from a systems perspective (we create a common
workspace but we do not dictate how the space is used), coordination is very active
from a systems perspective (we specify how activities are to be accomplished).

When we choose to move from collaboration to coordination for a specific problem,
we implement workflow systems in which we define forms, specify operations on
these forms, specify routing logic for the forms, specify how external data is to be
accessed or modified, specify triggering actions that occur when certain conditions
are met, etc. We develop workflow applications, and to do this we need applications
development tools. Coordination, as used here, refers to the use of application
development tools for a class of applications generically referred to as workflow,
where a major attribute is often "tracking" some resource. The essential tool for
building coordination systems is an applications development environment.

While exploiting structure in workflow applications is important, it overlooks a
significant segment of coordination which relates to tasks and activities that are not
pre-defined. In fact, most real work involves a combination of highly structured
processes and tasks where the process is fuzzy and the rules, routes and roles are
dynamically defined as the work is being done. This is why workflow systems alone,

SS 1997

Groupware: Communication, Collaboration and Coordination - 22 -

without the collaborative and communication components that provide for "soft"
interaction, are often unsuccessful and deemed to be "too rigid."

For example, consider a software bug fix application. The structured steps might
include the initial registration of the bug, submission to a project manager, assignment
to a programmer/analyst, routing to quality assurance, delivery to a configuration
management specialist, and posting to a public reference library (e.g., the World Wide
Web or bulletin board) for downloading to customers. Throughout this process,
however, there are likely to be several unstructured steps that cannot be anticipated
or automated, such as referring to a trouble tracking database for help in identifying
similar bugs and fixes, and e-mail requests for more information from various parties.

Coordination, then, is more than the automation of a sequence of structured tasks,
bringing people into and out of a process as needed. Rather, when we look at how
work is really done, we see that knowledge that is essential to the completion of a
process is acquired as a result of the relationships among the various participants,
outside of the context of the process itself. Complete coordination includes support for
informal conversations (through e-mail, discussion databases and reference
publishing systems) that allow people to gather the information they need to get their
jobs done, especially when these conversations happen in the context of a more
structured process.

In previous chapters, we examined how the individual models of communication and
collaboration, based on pushing and pulling information, each suffered from
incompleteness when applied beyond its original design point. An integrated solution
that coordinates the use of both messaging for notification and shared databases for
collaboration provides a more balanced and comprehensive approach to supporting
structured and unstructured processes.

Updated: 07.11.95 22:10:07

Groupware - Communication, Collaboration, Coordination

Four Generations of Messaging

The fourth generation of messaging systems exploits the coordinated use of
messaging with shared databases. When we look back at how messaging systems
have evolved we can see that first generation systems were only capable of
supporting simple text messages. Second generation systems augmented this with
the capability to attach binary documents to simple text messages. Third generation
systems provided support for rich text (i.e., color, multiple fonts, character sizes, etc.)
and embedded objects in the message body itself, as well as in binary attachments.
And finally, fourth generation systems represent a significant advance in messaging
through the support for hypertext links to documents in shared databases and file
systems. Rather than attaching an object to a message, we include a "doclink" -- an
electronic pointer to the object in a shared database -- in the message. When a user
double-clicks on the doclink, the object is automatically and immediately retrieved and
presented to the user. Messaging is improved because it no longer requires that
users include objects and attachments in messages. Shared databases are improved
because users now have a means of notifying others of the existence of relevant or
important information that otherwise might have languished in a database, unused
and unnoticed. We refer to this as integrated messaging and groupware.

SS 1997

Groupware: Communication, Collaboration and Coordination - 23 -

Four Generations of Messaging

Time

Capability

Embedded Pointers to
Database Objects

Rich Text, Embedded
Graphics

Text Plus
Attachment(s)

Text Only

Consider a coordinated activity in which an advertising director regularly sends out
drafts of print ads, complete with text and graphics, to a group of editors for review.
For each ad, the director uses e-mail to distribute the ad to the review group. The ad
is sent as a binary attachment to the e-mail message. Responses from various group
members -- in the form of actual changes to the ad or suggestions and comments --
quickly result in a version control and document management problem. At the same
time, pushing large messages back and forth dramatically increases the volume of
messaging, and thereby, network traffic.

Alternatively, using a shared database, the director avoids many of these problems.
The shared database allows the director and reviewers to keep track of the most
recent version of the document as well as the threaded discussion that led to various
changes. On the other hand, this solution lacks the notification capability needed
when a new ad has been placed in the database for review.

SS 1997

Groupware: Communication, Collaboration and Coordination - 24 -

Fourth Generation Messaging

2%-(&7

6725(

:25/'

:,'(

:(%

Combined Push & Pull

The coordinated use of messaging and shared databases in a fourth generation
e-mail system (i.e., integrated messaging and groupware) resolves both of these
problems. When the director posts a new ad to the shared database, an e-mail
message containing a hypertext link or "pointer" to the document is also created.
E-mail is used to notify reviewers of the new ad, but, the new ad is not physically
transferred as an attachment to the mail message. Instead, the document link in the
mail message dynamically transfers the reviewers to the new ads which remain
resident in a shared database. This allows the ads to be managed and maintained
centrally, providing version control and support for collaboration in a shared space.

Updated: 02.11.95 22:04:28

Groupware - Communication, Collaboration, Coordination

Integrated Messaging and Groupware

In an earlier chapter, we noted that e-mail users are likely to think of groupware in
terms of messaging, while users of conferencing and on-line publishing systems see
groupware as a function of shared databases, and users focused on the automation
of structured business processes are inclined to perceive groupware as workflow
automation. In fact, each of these technologies on its own does represent a specific
dimension of groupware. Messaging and shared database technologies have each
become the foundation for workflow automation systems. Messaging has moved into
the workflow space by exposing its APIs to application development facilities and
tools to create a workflow routing approach to automating processes. Shared
databases have been similarly extended to support a tracking approach to workflow
automation.

SS 1997

Groupware: Communication, Collaboration and Coordination - 25 -

Messaging Model of Workflow

Workflow automation is typically associated with the automatic routing of documents
such as expense reports. Route-based workflow automation generally uses the
underlying messaging system to route documents to the next person who must take
an action (e.g., approve the expense report). The route can be hard-coded, or a rule
may determine the routing path based on a specific value (e.g., the amount of the
expense) or on a person's role (e.g., the initiator's supervisor). These rules can be
sophisticated and may even be able to call an external application to retrieve some
data (e.g., a supervisor's authorization limit).

Routing-based workflow is powerful because it matches the model of routing paper:
the document is acted upon and sent to the next person for further action.

There is a significant drawback to the routing-based workflow model: as the document
is being routed, it becomes unavailable to anyone other than the person in whose
inbox it now resides. The problems this can create are illustrated in the following
contract routing example, in which a contract is being negotiated with a customer. In
order to be signed, the contract must be approved internally by several people. A
mail-based workflow system routes the contract to each person requesting approval,
denial, and/or comments. Suppose the customer would like to know the status of the
contract, or would like to make changes to the contract during the approval process.
Is it possible to determine who has the contract at any given point in the process? If
so, is it possible to retrieve it? At which point can changes be introduced? What
happens to the approval process once a change has been implemented?

Anticipating some of these problems is possible (perhaps rewriting the rule or adding
a new rule that accounts for when a person goes on vacation), but building strategic
applications on patches such as this is uncomfortable for companies, and anticipating
all conditions and exceptions is impossible.

Shared Database Model of Workflow

The second workflow model is the shared database. In this model, users consult a
tracking database to check the status of specific documents.

The shared database model has three advantages. First, the database sits on a
server and is subject to server-based processes (such as RDBMS triggers, agents or
macros) that can initiate action without any specific user activity. In many cases, the
action may be the direct result of a lack of user activity (a sales person has not
contacted a customer in 30 days, a monthly report has not been submitted, a contract
to be approved is waiting for a specific person for over 24 hours, etc.) or an external
condition (inventory has dropped to the reorder point, a client's credit rating has
changed, a deadline is approaching).

Second, the shared database model keeps the document or record in question
available for others while the workflow proceeds. In the contract approval example,
the changes could be made to the original document in the database, and, depending
on the changes, the workflow could continue or be aborted and launched again.

The third advantage is that the shared database model makes the management and
macro-management of the workflow much easier. The server can both monitor
specific instances of the process and keep aggregate statistics about the overall
process, the latter allowing better management and planning of the workflow.

The primary constraint of the shared database model is the lack of event-driven
notification by the system to the workflow participants. That is, it is incumbent upon
the user to check the database.

SS 1997

Groupware: Communication, Collaboration and Coordination - 26 -

An Integrated Model

These constraints of the messaging and shared database models of workflow sound
familiar because they are reflections of the constraints of their underlying
technologies. Messaging is very efficient at sending a document, but provides no way
to manage the document as it proceeds through its route. Shared databases are
proficient in managing documents and providing an overview, but are poor at alerting
users of a change in state or information.

We have already seen the advantages of a fully integrated messaging/shared
database system through fourth generation messaging. If we generalize this model, it
becomes obvious that workflow applications built on a common platform that natively
supports both models -- a messaging subsystem with conditional routing capabilities
and a shared database for storing, retrieving, viewing, and managing work processes
-- provide the robustness and flexibility needed to effectively automate work
processes.

To illustrate, let us look at how the same contract routing and tracking system
discussed earlier might be implemented using an integrated model. The contract is
created and stored in a shared database. When it is saved, a mail message goes to
the first approver. The message is not the contract itself, nor does it tell the approver
where to find the contract. The message contains a hypertext link to the contract,
which, when activated, will launch the contract for the approver's use while
maintaining it in the shared database. Further approvals and routing can be done, but
the most up-to-date version of the contract itself is always available in the database.
Any requests about status can be answered by anyone with access to the database.

Grou pware Buildin g Blocks

Coordination
Application Development Framework

Combined PUSH & PULL

Communication
Messaging
Notification

"PUSH"

Collaboration
Shared Database

Data Sharing
"PULL"

Updated: 02.11.95 21:13:40

Groupware - Communication, Collaboration, Coordination

SS 1997

Groupware: Communication, Collaboration and Coordination - 27 -

The Extended Transaction Model

As we have seen, there are two basic approaches to workflow systems, one based on
a messaging model and one based on a shared database model. Workflow systems
that support both models, as well as supporting the less structured collaborative
functions, will be most successful.

It's important to recognize, however, that these workflow systems rarely exist in
isolation. More often than not, the workflow processes are the "front-office"
components linked to specific "back-offfice" systems that have long been automated.
Hence, the linkage between the "output" of the workflow system and the "input" of the
more classic transaction processing system is critical. An example will be helpful, and
the purchasing process serves as a good example.

A typical "purchasing system" begins with an approved purchase order requisition,
and produces an official purchase order. These systems are typically very well
automated, and most of the cost reductions to be gained from automation have been
realized. The input to the system is an approved purchase order requisition.
However, an approved purchase order requisition is really the result of a workflow
process that begins when someone decides that he or she needs to purchase
something. That individual creates a purchase order requisition, and this requisition
"threads its way" through the system until it is finally approved or rejected. When it is
approved, the "transaction" in the classic sense is initiated. In reality, however, the
business transaction was initiated when someone created a purchase order
requisition. Almost all back-office systems have a significant front-office workflow
component.

We refer to this broader and more business oriented view of a transaction as the
extended transaction model. By tightly linking the front-office workflow process to the
existing back-office process, we can achieve significant economic gains. To achieve
this tight linkage, we need to exploit tools that allow us to interact with the existing
transaction systems in a very controlled way. Many transaction processing systems
support this form of programmatic interface.

By viewing workflow as part of an extended transaction, it becomes extremely clear
that the key to developing rich workflow/coordination applications is an application
development environment that is integrated with and part of the workflow system.

Updated: 02.11.95 22:14:30

Groupware - Communication, Collaboration, Coordination

An Application Development Framework

There are a number of essential components to a rich application development
environment for building coordination applications:

A rich forms designer and filler tool is required. Forms will include text, images,
sound, fields, buttons, list boxes, etc. and may consist of subforms. These
subforms may be windows or dialog boxes with familiar list boxes, combo boxes,
etc. Strong editing capabilities are required for fields in the form, and this editing
may require interfacing with external databases to validate user entries.

SS 1997

Groupware: Communication, Collaboration and Coordination - 28 -

Some form of programming capability is required, in the form of a scripting
language, macro language or full programming language. A rich set of APIs to the
underlying technology is required. Developers must be able to provide
instructions (through scripts, for example) whenever events such as opening a
form, changing a field or adding a new document to the database occur.

An agent capability is required so that actions can be taken (such as a script
being run) whenever a specified event occurs.

A development environment that supports a rich debugging capability is required.

End user definable views are required to support the customized display of
information based on task, individual and group requirements.

When these tools are properly applied to develop workflow applications, the result can
be very robust applications that exhibit a natural user interface and at the same time
have the control necessary for enterprise applications.

Updated: 02.11.95 22:16:43

Groupware - Communication, Collaboration, Coordination

Conclusions

In most business processes, the process is fuzzy and the rules, routes and roles are
actually determined as the work is being done. It is in this fuzzy aspect of work where
leveraging knowledge is most critical, and where business professionals are
responsible for managing their jobs. Our discussion of the structured and unstructured
activities that comprise every business process yields the following conclusions:

Most real work involves dynamic movement between structured, unstructured, ad
hoc, and predefined work, requiring an integrated push/pull model to support
users as they move from one type of work to the next in the normal course of a
process.

Structured, pre-defined group activities can be supported by programmatic
workflow applications, of which there are two basic types: routing, based on
messaging technology; and tracking, based on shared database technology. The
integration of these two approaches to workflow automation is achieved through
an integrated application development framework which exploits services of both
messaging and shared database systems.

The application development environment is a key component of a groupware
system architecture. This is discussed more fully in the chapter "Architectural
Considerations."

Updated: 02.11.95 22:20:54

Groupware - Communication, Collaboration, Coordination

Architectural Considerations

So far, we have established the need for a groupware infrastructure that not only

SS 1997

Groupware: Communication, Collaboration and Coordination - 29 -

supports applications that individually depend on communication, collaboration or
coordination, but exploits the synergy created by the integration of all three.

From these reference points, we can determine the key infrastructure requirements.

An information model based on a object store/distributed shared database that
houses and manages data, regardless of original source.

A distribution and access model based on messaging and database replication
for the movement of data to and from anywhere and anyone in the organization.

An application development framework that leverages the native underlying
services of the object store and distribution/access model for the development of
custom groupware applications.

While these represent the core components of an integrated groupware architecture,
integration with external data sources, security and directory services are also
critically important.

Updated: 02.11.95 23:14:02

Groupware - Communication, Collaboration, Coordination

Information Model: The Groupware Object Store

The object store is the heart of a groupware infrastructure. In order to effectively
become an enterprise information repository, an object store must be defined by its
ability to provide shared access among users and applications as defined throughout
this document. Specifically, the object store is the message store for communication
applications, a virtual common workspace for collaborative applications, and a shared
database for coordination.

The object store should be internally consistent across all of these applications. In
other words, there is no reason the internal structure of a message store for a user's
inbox should be architecturally different than that of a conferencing database or of a
workflow application. The appearance at the user interface level may be significantly
different, but at the deepest level the organization of the data into individual fields, rich
data types, attachments and objects can, and should, be consistent.

This model provides the following benefits:

Consistent method of handling information throughout all stages of
communication, collaboration and coordination -- for end users and application
developers alike.

True separation between data and applications.

One consistent set of information for many uses -- eliminates data redundancy
and the problems associated with it.

The groupware object store is a distributed, shared database. At its lowest level the
object store holds objects. A distributed groupware environment consists of an
arbitrary network of servers. Within a server, there is a set of individual databases.
Within the given database, there is a set of documents. Within a document, there is a
set of fields. A document is normally how data is presented to the end user. This is

SS 1997

Groupware: Communication, Collaboration and Coordination - 30 -

the basic unit of storage in the object store. The ability to manage information at this
level of granularity allows significantly more powerful information handling than the
traditional message store allows.

To be a sustaining information management system, the object store should support
the following:

Rich objects. The breadth of object types that an object store is capable of
supporting serve to define or limit the variety of applications that it can support.
Documents should support a wide variety of objects including numbers, text, rich
text, graphics, images, voice, video, links to other documents, and embedded
applications.

Document Hierarchy. An object store requires a facility for document threading
through preservation of the parent-child relationship between documents and the
responses to them. This is most prevalent in group conferencing and discussion
databases.

Versioning. Support for versioning when changes are made to documents is
critical for document sharing where multiple authors are involved.

Hypertext Links. Support for links between documents within and across
different databases provides for the greatest level of flexibility in referencing
information contained in databases. These links should be a part of the document
so that they can be maintained and managed in a distributed environment.

Consistency. All applications of the underlying object store should be based on a
fundamental set of architectural principles. This consistency enables a number of
important features and capabilities of the system as a whole. Full text indexing
and retrieval capabilities embodied in the groupware system can uniformly act on
all types of storage, be it e-mail or a help desk application. This enables a
consistent user experience for data and applications, regardless of form or
location.

Updated: 02.11.95 23:17:03

Groupware - Communication, Collaboration, Coordination

Distribution Technologies

Store-and-Forward Routing

Store-and-forward routing is key to messaging and the push model of communication.
The distribution model for messaging is based on a store-and-forward asynchronous
transport. This transport is responsible for routing information from senders to
recipients as characterized by the push model associated with communication.
SMTP/MIME and X.400 have emerged as the industry standards for messaging
transports. Support of these standards is important as they play an important role in
supporting messaging interoperability between heterogeneous messaging
environments within and between enterprises.

Once the messages have reached their ultimate destination (i.e., the message/object
store), a user can replicate the messages from the server to the client for use in a
disconnected mode. In this way, from a document perspective mail messages are
treated like any other document in the object store, inheriting all the services of that
object store (see Client Replication in the following section). For server to server

SS 1997

Groupware: Communication, Collaboration and Coordination - 31 -

routing, however, mail messages are distributed differently from other documents
through store-and-forward mechanisms.

Replication

The groupware object store is a distributed, shared database. While this is in keeping
with the benefits that a distributed computing model offers, technology is required to
present a consistent and logical view of physically distributed information. Database
replication accomplishes this by synchronizing changes to multiple copies of the same
database at geographically dispersed sites. For example, a remote site in San
Francisco can make a replica of a database in Paris. This allows users in San
Francisco to access this information on a local server as opposed to connecting to the
database server in Paris. Replication automatically synchronizes changes made in
both locations so that workgroups in San Francisco and Paris have a consistent
logical view of the database. The process of replication involves examining
documents that have been added, modified, or deleted from each server and then
updating both databases so that each is identical to the other.

While the process of replication may appear to be straightforward, it is important to
examine replication mechanisms more closely when selecting technology.
Implementations vary widely, having a significant impact on network topologies
required to support a distributed environment. The following is a closer look at the
requirements of replication:

Bi-directional Replication. Once two replicas of a database are synchronized,
workgroup members on different networks and servers begin to make changes,
deletions and additions to them. That is, as soon as the replication process is
complete, the two replicas begin to fall out of synch with each other. Therefore, at
the next replication, the server in San Francisco should be able to replicate all
changes, additions and deletions to the server in Paris, while at the same time
replicating back all the changes, deletions and additions made on the Paris
server. The replicator should flag any conflicts.

Efficiency. Given that networks vary widely across an enterprise, the replication
process should be highly adaptive and optimized to minimize the volume of
network traffic. The most important determinant for network utilization is the
granularity of replication. For example, the server in Paris does not need to copy
the entire San Francisco database each time there is a change at the field or
document level. Only those fields which have changed in either location need to
be replicated.

Client Replication. Mobile or nomadic users in a workgroup need the same level
of access to server databases as connected users. The way that a user accesses
and works with information should be consistent regardless of whether they are
connected to the network or not. Therefore, replication should not be limited to
server-to-server connectivity, but should also include client-to-server connectivity.
Client-to-server replication gives the mobile user the capability to maintain a local
replica of a database (or several different databases on several different servers)
and work with it off-line in exactly the same manner as when connected to the
server. Once the user connects to the server again, replication is used to
synchronize changes that were made off-line. At this point, server-to-server
replication can take over to distribute the changes across the enterprise. The
ability to select documents and databases to take on the road is a natural
extension of the way we pack briefcases when traveling on business. Since
anything that can be stored in a database can be replicated, client replication
gives users the ability to maintain a consistent level of communication,
collaboration and coordination any time, any place. Nomadic users can take the
message store (e-mail), discussion databases, reference information, and any

SS 1997

Groupware: Communication, Collaboration and Coordination - 32 -

coordination or workflow application on the road using a single method.

Programmable Control. Replication should give a great degree of control to
administrators and end users by allowing them to selectively replicate documents
based on relevant criteria; for example, documents that have changed as of a
certain date, documents by author, size, or customer name. Given time and
resource constraints -- such as limited access to expensive telephone lines,
wireless communications or limited disk space -- mobile users have an even
greater need for this kind of programmability.

Application Distribution. One of the challenges of managing a cross platform
distributed client/server environment is the installation and upgrade of
applications. This is further exacerbated in a groupware environment where group
needs are constantly changing. For these reasons, an application deployment
environment should leverage the data distribution/replication capabilities of the
object store. That is, replication should be used to distribute application objects
and changes to applications just as easily as data. Each time a user accesses the
object store, the most current version of the application is launched. The
groupware infrastructure uses replication to distribute and deploy data and
application updates automatically through client connection to a server. This can
save application developers and systems administrators the tremendous burden
of manually installing new or modified applications to distributed clients and
servers across an enterprise.

Point-to-Point Transfer . Reliable synchronization of databases requires an
interactive means of "handshaking" between systems. By definition, the model for
this must be synchronous. RPC (Remote Procedure Call) provides a reliable
transport for point-to-point replication. This is accomplished through direct
connections with the end point for replication.

This is in contrast to the asynchronous model used in the messaging
store-and-forward transport which routes messages through many intermediate
hops. In this model, changes that are made to the database would be mailed to
other databases. At first glance, this appears to be a clever solution, leveraging
an existing messaging infrastructure. However, in practice store-and-forward
replication is distinctly complex and difficult to manage. One of the most
intractable problems is that guaranteed delivery of message data is much less
deterministic than in a point-to-point environment. Store-and-forward messaging
implies, for example, an unknown periodicity; in other words, one cannot
necessarily predict how long an electronic mail message may take when traveling
across several hops. This is particularly true in large corporate and public
networks in which the route of an e-mail is determined dynamically, that is, as the
message is sent (and hence may be different each time). Thus it is difficult to
know when, or even if, the object stores are in fact up to date.

Updated: 02.11.95 23:25:47

Groupware - Communication, Collaboration, Coordination

Application Development Environment

An important characteristic of a groupware platform is its ability to support rapid
application development and deployment. The platform should be capable of
supporting a full spectrum of application development, ranging from end users with no
programming experience to power users to professional developers. Clearly, each set

SS 1997

Groupware: Communication, Collaboration and Coordination - 33 -

of developers has their own set of requirements, with end users depending on ease of
use and professional developers relying on the robustness of the development
environment.

A robust development environment should effectively shield the developer from most
application deployment considerations.

Platforms. Because the groupware infrastructure acts as a layer between
applications and the underlying hardware/software operating environments,
applications can be developed without thought to their eventual desktop, network
and server operating systems. All system-specific attributes of an application,
such as the individual characteristics of a desktop graphical user interface, are
supported without any additional programming or modifications.

Application Distribution. Because application logic is handled like any other
object within the distributed object store, applications developers can leverage the
distribution capabilities of the object store for application distribution. Developers
need not concern themselves with distributing and installing applications and
updates. The applications are self-distributing, and can be deployed easily to any
site, regardless of geographical location.

Mobile Support. The ability of a groupware infrastructure to support mobile users
frees developers from creating customized mobile versions of their applications.
Any application behaves the same regardless of its use in connected or
disconnected mode.

Programming Languages and Tools

As already discussed, in an integrated messaging and groupware infrastructure,
application logic is within the object store. In addition to relieving the developer of
deployment issues, it provides a modern platform for rapid application prototyping.
Once logic has been added to a database, no compiling is required. The application
can be distributed to a set of users for testing and acceptance. Any changes
requested by users can similarly be made and redeployed without a lengthy
redevelopment and redeployment process.

An integrated programming language within this environment should meet the
following two sets of criteria.

First, the programming language must meet the basic requirements of any
professional development environment. This set of requirements distinguishes it from
development using templates and macro languages:

Fully Structured. To create sophisticated groupware applications, developers
must have complex logical and flow-of-control capabilities, as well as
programming constructs such as looping and branching in the programming
language.

Professional Development Environment. Unlike the bare bones command line
interface that distinguishes most product macro languages, a robust groupware
programming language, like any programming language, requires a modern,
full-featured interactive development environment, including a sophisticated
editor, a class library browser, and interactive debugger. This is a reflection of the
fact that a programming language is a tool for professional developers and power
users with real programming experience.

High Level of Abstraction. Modern client/server systems and their event-driven
graphical user interfaces demand a high-level of skill on the part of developers.

SS 1997

Groupware: Communication, Collaboration and Coordination - 34 -

The language should allow the developer to create graphical, event-driven
interfaces without having to resort to low-level programming.

Modern UI Support. The programming language must facilitate development of
user interfaces in a modern GUI environment. It must be easy to create, display
and edit forms, create pop-up windows (e.g., dialog boxes), and support standard
GUI interface tools such as buttons, list boxes, etc. Strong event handling must
be supported so that a developer can specify what action should be taken when a
user clicks on the mouse or enters data into a field, for example.

Second, a well-integrated language should take advantage of all the groupware
platform system-level services. This serves to distinguish between development tools
that support groupware application development but do not necessarily exploit the
platform services unique to a groupware infrastructure.

Support for Client and Server Platforms. Most groupware applications include
functionality on the server as well as the client. Applications created with a
programming language, therefore, should not be constrained to client-only or
server-only scripts. This is in contrast to traditional database scripting languages,
which operate only on the server as stored procedures. Likewise, desktop
programming languages have naturally operated only on desktop platforms. A
single groupware programming language should run across both sides of the
network, taking full advantage of the client/server architecture.

Native Access to System Services. Developers require complete access to the
capabilities of the object store and messaging infrastructure. Facilities such as
replication, security and messaging must be natively accessible to the developer
using the programming language.

Multiple Platform Support. Modern client/server groupware applications support
entire enterprises, and often cross company boundaries to include customers,
suppliers and business partners. Programs written with a groupware
programming language, then, must also run on the full complement of client and
server platforms. Moreover, these programs should run without change or
recompilation due to platform-specific requirements.

Interoperability. It is likely that professional developers will employ more than
one programming tool in order to create a single application or to modify an
existing one. That is, developers might also use the templates, pre-programmed
buttons, and macro language of a groupware environment. Therefore, the
programming language should be fully interoperable with these other
development objects. In addition, the language must allow developers to freely
call third-party APIs to forge complex system integration.

An integrated programming language that meets these criteria is an attractive
alternative to templates, macro languages, and third-party and stand-alone tools and
languages, in creating high value client/server groupware applications.

End User Development

The greatest challenge to a groupware infrastructure is the need to reconcile two
diametrically opposed principles: creating applications for use by groups, while at the
same time accounting for the likelihood that individual users will want or need to view
components of that shared application in a completely unique fashion.

In discussing the essential characteristics of a groupware application development
framework, we mentioned the need for native access to the services of the groupware
object store and distribution services. Similarly, users themselves need native access

SS 1997

Groupware: Communication, Collaboration and Coordination - 35 -

to the data stored in the object model in order to manipulate it toward specific ends.
Examples of user-defined extensions to existing applications include:

Customized Views. There is no single, optimal format for presenting information.
Each member of the group will have his or her own special needs, with some
preferring documents ordered by date, others by name, and others by title.
Furthermore, the amount of information presented on the screen is also a matter
of preference. For this reason, users will modify an existing application by
creating their own private views of information.

Categorization. Most people organize information by breaking it down into
categories. A category might be a project name, a customer reference, or a
meaningful topic (e.g., competitive information). In fact, some items might fall into
more than one category. The important point here, of course, is that it is the user
who defines these categories, since it is the user to whom the category names
hold meaning. That is, all documents that relate to a bug fix project might be
categorized by one person under the heading "bug fix," by another person under
the heading "Top Priority," and by yet another person under the project's code
name.

Agents. Every person has their own perception of what is important, relevant or
urgent. Receiving information from others who decide on their own what is urgent
or important is one thing. Another thing entirely is one's ability to sift through a
mountain of information, deciding for oneself what is or is not important. By
building agents, individual users can automate the search for information so that
the groupware system itself seeks out, finds and retrieves information based upon
a set of user-defined criteria.

Broadened Scope. Applications designed for relatively small groups frequently
grow to include more users. The marketing department includes members from
sales and product development in a business process, and needs to provide
those new participants with access to an application and the data it contains.
Rather than going back to the original designer, qualified users are able to make
changes to the access list, broadening the scope of the application beyond its
original group.

Updated: 02.11.95 23:30:33

Groupware - Communication, Collaboration, Coordination

Integration with External Data Sources

Much of the information that is captured in a groupware application is actually created
there. That is, an individual enters the information directly into a groupware document.
Yet most business processes rely on data that exists in other data stores in addition
to the groupware object store. A groupware infrastructure should seamlessly import,
share and leverage the structured data stored in relational databases and the
semi-structured data found in external data sources such as desktop tools (e.g., word
processors and spreadsheets), document management systems and public
information networks.

Relational Data. Semi-structured data often provides the context in which
structured data has meaning and relevance. Inventory levels and order
processing statistics tell a richer story when accompanied by illustrative details
such as descriptions of product cycles, manufacturing techniques, a changing

SS 1997

Groupware: Communication, Collaboration and Coordination - 36 -

competitive environment, and customer feedback. Clearly, the integration of
structured and semi-structured information is critical to the value of a groupware
application and infrastructure.

By definition, the groupware object store cannot supplant the RDBMS; the design
center of an RDBMS requires certain characteristics (strong locking, transactions,
commit/rollback). In contrast, the design center of the groupware object store
requires support for a distributed, occasionally connected model. The two
technologies complement one another.

Image/Video Servers. Similarly, image repositories and video servers have
certain specific requirements -- namely, very large storage, and, in the case of
video, the ability to deliver data in an isochronous (constant data rate) fashion.
Neither a traditional RDBMS nor a groupware object store provides the
appropriate vehicle for such forms of data. Nonetheless, the data/information
requirements of users and groupware applications don't recognize the
technological bounds of information storage and management. To better
understand this, it is important to distinguish between a logical and a physical
view of information. In order to present a consistent logical view of information to
users or groupware applications, the object store must be the integration point of
the various data sources.

Desktop Productivity Tools. Microsoft has defined Object Linking and
Embedding (and, to a lesser degree, Dynamic Data Exchange) as the standard
for its Windows family of operating systems. A consortium consisting of Apple
Computer, IBM/Lotus Development, and Novell has made progress in defining
OpenDoc, a cross-platform data integration standard based on IBM's System
Object Model. The common data store must comply with these standards to
ensure the broadest integration with desktop products.

Internet and Other Public Information Networks. One of the richest stores of
semi-structured information is found in the discussion groups and World Wide
Web pages of the Internet. This information represents as much of a corporate
knowledge asset as any set of internal memos and discussion databases.
Therefore, a complete, modern groupware infrastructure must provide a means of
leveraging that knowledge. Internet resources should appear to the groupware
user as native resources, and, alternatively, users should be able to publish
native groupware information directly to the public network.

Updated: 02.11.95 23:35:30

Groupware - Communication, Collaboration, Coordination

Security

Messaging systems and other semi-structured data stores have traditionally used an
adequate, but relatively brute force, security system. Most information in a message
store or in a personal productivity tool is inherently personal. That is, the messages in
a user's personal post office and the documents stored on a desktop computer hard
drive are perceived as the "property" of the individual user. In order to ensure that
only the owner of that information has access to it, the security system only has to
safeguard against unauthorized access to the data store itself. Similarly, all the
information contained in a public network system such as the Internet or a commercial
on-line service is available to all authorized users. All that is required is initial
authorized access to the service. For each of these sets of data management

SS 1997

Groupware: Communication, Collaboration and Coordination - 37 -

systems, private passwords have long served as adequate security mechanisms to
protect against unauthorized access.

Groupware, on the other hand, makes use of an underlying object store from which
users can "pull" information. This object store is a shared organizational resource, as
opposed to the personal resource of a message store, and it typically contains
sensitive and proprietary information, as opposed to the more public information
typically available on public networks. The information contained in a shared object
store, therefore, requires a more sophisticated security model that not only restricts
access to the system at large, but which controls more granular levels of access. This
is accomplished by employing multiple layers of security mechanisms: authentication,
which controls access to the system at large, access control, which establishes
different categories of user access to documents and information, and document and
field-level encryption, which protects specific documents and fields from unauthorized
viewing.

In addition, because messaging itself will continue to serve as a means of sharing
sensitive corporate information, it must be a trusted courier. The integrity of individual
messages -- their content and their authorship -- must be protected. Digital
signatures, which rely upon the same encryption technology used for authentication,
are a fourth layer of security employed by an integrated groupware platform.

Authentication

The ability to establish the identities of users as well as servers is the cornerstone of a
trusted system. The functionality of other security services rests on the reliability of
the authentication service. Authentication based on a system using certificates and
encryption is recognized as the state of the art: the de facto industry standard for
access to X.500 directories is the X.509 certificate, which is based on RSA public key
encryption technology, recognized as the only encryption system without an exposed
point of compromise.

Encryption works as follows: A user holds a certificate (or ID file) that identifies the
user by name, password, license number and a private encryption key. The private
key has a counterpart "public key," which is stored in a publicly accessible directory. It
is virtually impossible to mathematically derive the private key from the public key.
When a user attempts to gain access to a server, the following process is followed to
ensure user authentication:

The server sends the user workstation a random number.

The client encrypts that number with the user's private key, which is resident on
the workstation.

The result is returned to the server.

The server decrypts the number using the user's public key, which is resident in
the directory on the server.

If the numbers match, the user is authenticated and provided access to the
server.

Access Control

Some people must be allowed to see certain pieces of information or entire
databases, but should be excluded from other, more sensitive items. Thus, a systems
administrator should be able to assign to various groups and individuals different
access levels, including access to databases, documents and fields within

SS 1997

Groupware: Communication, Collaboration and Coordination - 38 -

documents. Access to each resource must be further refined to include various
actions: the ability to enter, read, write, modify and delete objects.

Access control should also be flexible enough to accommodate the different "modes"
that a user might assume. For example, when using a client workstation that is
connected to the network, the user might have manager access to a database, but
when connecting to a database from a telephone client, when authentication is not
possible, the user may be granted only reader access.

Field-level and Document-level Encryption

At times a user may need to share field-level information in a document with another
user while ensuring that no other users can view it. Access control can restrict
field-level access to categories of users (readers, managers, etc.), but not to
individuals. Therefore, for information that should be read only by specific individuals,
the database designer can encrypt the sensitive information using the public key of
the target readers to that sensitive field. In this way, only users with the corresponding
private keys will be able to read the encrypted field. This encryption can also be used
between servers so that only authorized servers can read particular documents or
fields.

Digital Signatures

Users frequently have to verify that the information they receive actually was sent to
them by the sender listed on the document. They also must be sure that none of the
information in the document was tampered with. Verification is managed by using
digital signatures. This service is the digital equivalent of a trusted courier with a wax
seal. When User A digitally "signs" a message, an encrypted mathematical algorithm,
or "digest" of the message is created and appended to the message using User A's
private key. User B receives the encrypted document, and decrypts the digest using
the sender's public key (which is available on a public directory). Using data in the
message, the digest is recalculated. If the two digests match, then the sender's
identity is verified. In this way, User B can be sure that the document was indeed sent
by User A, and that no one has intercepted the document en route.

Updated: 02.11.95 23:38:06

Groupware - Communication, Collaboration, Coordination

Directories

One of the central components of a groupware system is the directory, an information
store which maintains information about users and resources. As a part of the
groupware object store, the directory inherits the same system-level services as the
object store itself, which differentiates it from relatively simple message store
directories in the following three ways: their content includes data beyond name and
address, they can store information about non-human resources, they can be
replicated across the distributed network.

To ensure integration and interoperability with other directories, the groupware
directory should be consistent with the X.500 architecture. The groupware directory
should be a rich source of information extending its role beyond the "white pages" and
"yellow pages" of employee names and locations.

Specifically, they should include support for the following:

SS 1997

Groupware: Communication, Collaboration and Coordination - 39 -

Rich Text. As part of the object store itself, directories and their contents enjoy
the same rich text support as other documents. Therefore, a directory document
can contain such objects as user images and voice, embedded objects, and
tables.

User Defined Fields. The information contained within a directory should be
definable by the systems administrator or end user. By defining individual fields,
users can make use of a personal or private view of data that is not necessarily
available to other users of the directory.

Linked Documents. Because the directory itself is a document in the object
store, it is possible to create links from within the directory that point to other
documents in the object store. This allows administrators to "attach" important
descriptive or explanatory information to an entry in the directory without incurring
additional storage overhead. Linked documents help resolve the need for
separate directories maintained by multiple "owners" of directory resources.

The directory should contain information regarding, not only users, but other corporate
resources as well. The directory serves as an information source to users and the
system itself.

Systems. For some applications, the destination for a message is not a person
but rather a server, a fax machine, a telephone or other electronic "endpoint." The
addresses of these resources can be maintained in a directory.

Distribution Lists. Electronic mailing lists can be held in the directory, to be
expanded for distribution by e-mail or fax.

Public Key Certificates. The directory is a suitable repository for storing public
key certificates. Secured applications based on public key technology require a
repository to store public keys for verifying digital signatures and for encrypting
message contents among communities of users.

Roles. Directories are able to associate individuals with organizational roles that
can be used in workflow processes, and so workflow-based applications can
utilize roles rather than specific individuals. This enables workflow processes to
be more easily managed when people are on vacation or when they change job
responsibilities.

Routing and Replication Lists . The route that a message takes across hubs
and routers is often determined by availability and expense, which changes
depending on time of day, urgency of the message and other criteria. An entry in
a directory can include descriptive information regarding routing logic, so that a
particular address is always accompanied by routing instructions to ensure timely
and efficient transport. Likewise, when replication is initiated (normally at some
periodic interval, or at an administrator's request), the replication task looks up the
location of its counterparts, and determines the most efficient way to establish a
connection (via LAN connection, telephone dial-up, etc.).

The groupware directory also inherits the replication functionality of the overall
system. Replication makes directory synchronization easier to implement. First, the
replication process is bi-directional. Any changes made to the directory on any
servers are automatically synchronized during replication, which accounts for
changes, deletions and additions on both sides of the connection, as opposed to
directory propagation, which only sends changes in one direction, overwriting any
changes that may have already been made on the "recipient" directory. Second,
directories are often large databases, and as such require significant network
resources to replicate across an enterprise. The replication process should recognize

SS 1997

Groupware: Communication, Collaboration and Coordination - 40 -

which fields within the directory have been changed, added or deleted, and replicate
only those changes. Replication of the entire database (or folder) would needlessly
burden system resources.

Updated: 02.11.95 22:46:15

Groupware - Communication, Collaboration, Coordination

About Lotus

Lotus Development Corporation was founded in 1982 and is a wholly owned
subsidiary of the IBM Corporation. Lotus offers high quality software products and
support services that reflect the company's unique understanding of the new ways in
which individuals and businesses must work together to achieve success. Lotus'
innovative approach is evident in a new class of applications that allows information to
be accessed and communicated in ways never before possible, both within and
beyond organizational boundaries.

Lotus provides a comprehensive offering of award-winning products for the Windows,
OS/2, DOS, Macintosh, NT and UNIX environments that are easy to use and easy to
use together.

A Word on Lotus Notes

Lotus Notes is the industry leading integrated messaging and groupware product.
Ironically, there is little agreement among industry analysts, customers, business
partners and competitors, regarding what Notes really is. It has alternatively been
described as a client/server platform for developing and deploying groupware
applications, a platform for highly specialized applications, and an open environment
on which independent software developers can integrate their own products.

Notes is a product that has many faces. Most people think of Notes as the
applications they see and run in the Notes environment -- mail, discussion databases,
etc. The power of Notes is that these applications are merely specific instances of a
broad range of applications that can be written in Notes. There is no real "Notes
conferencing system;" rather, there are many, many instances of conferencing
systems that can be written in Notes -- because Notes is, at its core, an applications
development environment. Oftentimes, someone will take an existing conferencing
application and add fields to the forms so that structure can be added for a specific
purpose (e.g., when you add information about a customer inquiry, fill in fields that
state the details of the inquiry, the level of urgency, etc.). Once this is done, and done
with ease, we have a new conferencing application tailored to a specific type of
collaboration. These applications all take advantage of Notes' underlying
platform-level services, such as messaging, object store, replication, security, and
applications development. The Notes technology serves as a flexible groupware
platform or framework upon which groupware applications can be built and deployed.

From its inception, Lotus Notes has combined three powerful group support
technologies -- messaging, distributed object store, and a rich applications
development environment -- to form a component architecture that serves as the
basis for a large variety of groupware applications. It has been unique among
groupware systems in putting forward a database model for groupware -- both in
terms of the underlying user metaphor and in terms of the design tools available to
end-users and IT organizations. It supports end-user tailoring tools to make simple
changes to data structures and database views. It supports a rich set of APIs for
developers who wish to build alternative UIs that also leverage the database model.

SS 1997

Groupware: Communication, Collaboration and Coordination - 41 -

The implementation of the distributed database technology is also a unique advance
-- still far ahead of any other groupware product. Lotus Notes' robust replication over
occasionally connected networks made deployment possible at a time when few
organizations had achieved full network connectivity across their enterprise. It also
anticipated the growing need for true disconnected use on workstations and notebook
computers.

An entire industry of independent software vendors, systems integrators, application
developers and consultants has evolved around Notes. Lotus continues to cultivate
this community to help ensure that customers have the resources available to install,
develop, deploy and manage Notes-based applications.

Updated: 02.11.95 23:48:33

SS 1997

	Executive Summary
	Introduction
	Defining Groupware
	Communication
	Electronic Messaging
	The Message Store
	Conclusions

	Collaboration
	Shared Databases
	Collaborative Applications
	Reference Publishing Systems
	The Passive Nature of Shared Databases
	The WWW as a Collaboration Tool
	Conclusions

	Coordination
	Four Generations of Messaging
	Integrated Messaging and Groupware
	The Extended Transaction Model
	An Application Development Framework
	Conclusions

	Architectural Considerations
	Information Model
	Distribution Technologies
	Application Development Environment
	Integration with External Data Sources
	Security
	Directories

	About Lotus

