
IEEE Transactions on Systems, Man, and Cybernetics-Part A:Systems and Humans,
Vol.33, No.2, March 03, pp.179-193

Timing Constraint Workflow Nets for Workflow Analysis

JianQiang Li a YuShun Fan a MengChu Zhou b

aDepartment of Automation, Tsinghua University, Beijing 100084

bDepartment of ECE, New Jersey Institute of Technology, Newark, NJ07102-1982 USA

lijq99@mails.tsinghua.edu.cn, fan@cims.tsinghua.edu.cn, zhou@njit.edu

Abstract: The analysis of the correctness and rationality of a workflow model plays an

important role in the research of workflow techniques and successful implementation of

workflow management. This paper points out the relevant problems in the verification and

analysis of a workflow model. It discusses two important properties: schedulability and

boundedness of a workflow model considering timing constraints. To specify the timing

constraints, WorkFlow net [1] is extended with time information, leading to Timing Constraint

WorkFlow net (TCWF-net). This paper presents a model mapping method to convert a Directed

Network Graph (DNG) based workflow model, which is built by a graphic process modeling

language [2] extended with time information, into a TCWF-net. It then discusses the

schedulability verification and synthesis of TCWF-nets. Due to the fact that there is no iteration

in the TCWF-net obtained through model transformation, an algorithm to decompose the

acyclic and free-choice TCWF-net into a set of T-components is presented. Then, to avoid the

run-time congestion of a workflow model, which is the key to the performance management of

the business process automation a boundedness verification method is derived. The usefulness

of the research results is illustrated by an example.

Keywords: Workflow model, Petri nets, Boundedness, and Schedulability

1. Introduction

 Workflow management is a key technology in supporting business process reengineering and

an effective means realizing full or partial automation of a business process [3]. Despite the

abundance of workflow management systems developed for different types of workflow based

on different paradigms [4-7], the lack of rigorous theoretic foundation and then effective model

verification and analysis methods has blocked workflow techniques’ research and application.

 Workflow specifications address many issues including process control, resource,

 1

mailto:lijq99@mails.tsinghua.edu.cn
mailto:fan@cims.tsinghua.edu.cn
mailto:zhou@njit.edu

IEEE Transactions on Systems, Man, and Cybernetics-Part A:Systems and Humans,
Vol.33, No.2, March 03, pp.179-193

information, and function perspectives. Hence, we know from research that the rationality and

correctness analysis should be carried out from four aspects that are relevant for workflow

modeling and workflow execution: process control logic, timing constraint logic, resource

dependency logic, and information dependency logic. The objective of correctness analysis of

process control logic is to avoid the deadlocks or structural conflicts in the execution of a

workflow model because of the errors in its process control. Some verification and conflict

detection methods have been discussed in [2, 8-9]. Resource dependency logic verification

focuses on the proof of correctness of the static or dynamic resource allocation rules and

consistence with the process control logic. The information dependency logic, however,

indicates the internal consistence of a workflow-related data and correct temporary relation

among different workflow application data. The timing constraint verification and analysis deal

with the temporal aspects of a workflow model such as deadlines, variable calendar windows,

time scales, and alerting mechanisms for overdue actions. It also includs the schedulability

analysis of the constituent activities of a workflow model and its boundedness verification in

the case of multi-workflow-instances running concurrently, which is discussed in this paper.

Note that the timing constraint verification and synthesis should be conducted after the process

control verification is done, which means that the workflow model considered here is free of

structural conflicts (deadlock).

 In order to improve the efficiency and quality of a business process, each activity and the

precedence relations between different constituent activities in a workflow model should have

reasonable timing constraints according to the transaction instance arrival time, the required

service quality, and efficient resource management. Our investigation shows that mainly two

kinds of timing constraints should be considered: external and internal timing constraints. The

former follows implicitly from control dependency of a workflow schema. It causes the buffer

time that is handled by a workflow manager or workflow engine. For example, an activity can

only start 5 minutes after its preceding activities have finished, or it must start 10 minutes after

another specific activity ends. To specify this kind of timing constraint, the concepts of Lower

Bound Constraint (LBC) and Upper Bound Constraint (UBC) [10] should be introduced and

used in this paper. Internal timing constraint, which is managed by a resource agent (e.g. a

software system or human) that is responsible for the enactment of an activity, is embedded in

 2

IEEE Transactions on Systems, Man, and Cybernetics-Part A:Systems and Humans,
Vol.33, No.2, March 03, pp.179-193

the description of every individual activity. It includes the defined execution duration and the

executable time span of this activity. Addressing the issues of how to verify the correctness of a

workflow model from the time dimension and select rationally the time parameters at the

build-time is important in realizing efficient workflow management.

 When a workflow model is deployed in practice, the state of an activity in a workflow

instance may include initiated, enabled, ready, running, suspended, dead, error, and end.

However, in the time dimension verification and analysis of workflow models, only the

temporal behavior of task execution, which is defined at the build time, is concerned. Thus we

consider only the enabled, ready, running, and end states of activities in this paper.

 The workflow process definition models the life-cycles of all the transaction instances. On

one hand, the workflow engine interprets and maintains a workflow instance for each

transaction instance in the running time environment. Each activity in the workflow instance

must be allocated enough time to complete its execution with respect to imposed timing

constraints. On the other hand, a workflow model deployed in practice has a stable transaction

instance input rate, which means that there are many transaction instances handled concurrently

according to the same workflow model. When the input rate of an activity is greater than its

output rate, the congestion or overflow occurs. To avoid it in the running environment, the

execution durations of the coordinated activities in the process should conform to certain

constraints. Therefore, our time dimension workflow model verification and analysis method is

addressed through two levels: (1) schedulability verification and synthesis of a workflow model;

and (2) boundedness verification of a workflow model in the environment of multi-workflow

instances running concurrently.

Petri Net (PN) originated from the early work of Carl Adam Petri [11] has found many

applications in computer science. Because of their formal semantics, local state-based system

description, and abundant analysis techniques [12], their use as a mathematical foundation for

the formal analysis of workflow models is attractive to many researchers of workflow

techniques. Since Zisman [30] used PN to model workflow processes for the first time in 1977,

researchers have proposed their own techniques based on PN to model workflow. Some [3], [37]

recognize the adaptability problem inherent to workflows, i.e., the frequently and/or radically

changing character due to changing business rules. Thus, the work [1], [4], [14], [31], [32], [33],

 3

IEEE Transactions on Systems, Man, and Cybernetics-Part A:Systems and Humans,
Vol.33, No.2, March 03, pp.179-193

[34] focuses on how process control or data flow is modeled by PN to improve the adaptability

of a workflow model in a changing market environment. Table 1 highlights several proposed

PN classes for workflow modeling. However, despite the popularity of using PN for business

process specification, Han [31] warns that PN cannot apply directly for modeling workflows

due to their fixed structure.

Table 1. Overview of the proposed PN classes for workflow modeling

Petri net class Brief description

Information Control Nets
(ICN) [4]

By adding a complementary data flow model, generalizing control
flow primitives and simplifying semantics, ICN is a Colored Petri
net variant intended to represent control and data flow of office
workflow. A message-based exception handling mechanism for ICN
is provided to improve the flexibility of a workflow system.

Workflow-nets
(WF-nets) [1]

With one input place (ε) and one output place (θ), indicating the
beginning and end of the modeled business procedure, WF-nets
require that every transition (place) must be located on a path from ε
to θ. They are suitable not only for the representation and
valididation but also for the (process control logic) verification
[8],[9] of workflow procedures.

Reconfigurable Nets
[14]

As an extension of WF-nets, a Reconfigurable Nets consists of
several Petri nets which constitute the different possible
configurations for some mode of operation to support dynamic
changes and realize self-modification of a workflow system.

Modular Process Nets
[32]

Modular Process Nets are based on a hierarchical module concept
and the constructs for synchronous and asynchronous
communication between interpreted nets and their environment as a
framework for flexible workflow modeling and enactment, and can
be described as Element Net systems with minimal syntactic
extension.

Element Net system
[33]

By decomposing a WFMS into two basic components, namely a WF
model and a WF Execution Model, only a subclass of Element Net
System (EN-system) are needed to describe a WF model. Thus the
WF Execution Module can be implemented with enhanced
flexibility and adaptability.

Higher Order Object Nets
(HOON) [31]

Based on Modular Process Nets, the structures of the organisation
and resource configuration are explicitly embodied in HOON. The
net model and its enviroment are arranged in a client/server manner.

Predicate Petri nets
(PPN) [34]

Using inter-task dependencies to specify internal structure of a
workflow, PPN captures the relationships among subtransactions
within a flexible transaction model.

 Other workflow researchers have noticed the importance of workflow model analysis in

supporting business process reengineering and successful workflow management. Different

 4

IEEE Transactions on Systems, Man, and Cybernetics-Part A:Systems and Humans,
Vol.33, No.2, March 03, pp.179-193

kinds of PNs are employed for correctness and rationality analysis of a workflow model.

Because the control flow is at the heart of workflow specification, many researchers have

addressed the correctness verification of the process control of a workflow model. Some

transformation rules between WF-nets are proposed to allow workflow designers to modify

workflow structures while preserving its correctness and consistency [9]. A WF-net-based

verification method [38] for workflow Task Structures is presented in [38]. The process

verification and consistency checking techniques are discussed in [13] based on ordinary P/T

nets and the technique presented in [9]. In [46], an algebraic technique based on Petri nets is

proposed to check the local consistency of a workflow model and, using a composition theorem, it

can be used to verify the inter-organization workflow model. More work can be found in [39], [40],

[41]. Colored Petri Net (CPN) is used for the formal specification of a workflow process, and

simulation has been used to verify the coordination between workflow activities [45]. However,

although the literature on workflow has consistently stressed the importance of time [3-5, 7, 10,

27, 42-43], only a few papers address the application of PN to temporal analysis of a workflow

model. Through extending ordinary P/T nets with an interval function and a timestamp function

to model absolute as well as relative time, existing PN verification approaches are employed

[13] to test whether it is feasible to execute a workflow with specified temporal constraints. In

[48], a set of linear reasoning algorithms for commonly used workflow patterns is presented to

investigate the temporal properties of a workflow with timing constraints of deterministic

intervals. Performance analysis of workflow is research topic yet to be given the importance it

deserve [3, 7, 35-36, 42-50]. All the routing constructs of a workflow are mapped into a

higher-level Stochastic PN (SPN), then throughput time of the process is analytically computed

[47]. Based on four performance equivalent formulae, an approximate performance analysis method

of a workflow is presented in [49]. These two techniques both assume the infinite availability of

resources in the workflow configuration. Generalized Stochastic Petri Nets (GSPN) are used to

model workflow [35, 44], and then a method based on a continuous time Markov chain (CTMC) is

used to obtain upper bounds of the execution performance. A simple GSPN, which is a so-called

load equivalence aggregation (LEA) model, has been developed in [36], and then the model is

simulated using a Coloured GSPN (CGSPN) to obtain some performance related measures of

human resources in a workflow. Commonly, the techniques applying PN in the domain of

 5

IEEE Transactions on Systems, Man, and Cybernetics-Part A:Systems and Humans,
Vol.33, No.2, March 03, pp.179-193

workflow exploit the correspondence between the special kind of time-related PN and the

dynamic behavior of workflow systems, and use existing PN analysis techniques for workflow

analysis. For more literature on the application of PN to workflow modeling and analysis,

readers can refer to the two workshops on workflow management [42], [43, 50].

Considering Han’s statement as mentioned above and the fact that most of the commercial

workflow products use different kinds of DNGs instead of PN for their model specification, the

mapping from such DNG to PN are worthy to investigate. Also, to realize systematic time

dimension verification and analysis of workflow models, it is necessary to incorporate all the

relevant timing information into PN-based workflow models.

 The next section introduces a graphic process modeling language [2] extended with timing

information and the concept of TCWF-nets by incorporating timing information into WF-nets.

Section 3 proposes a model mapping method from a DNG-based workflow model built by the

extended basic process modeling language to TCWF-net. Section 4 presents the schedulability

verification methods and heuristic rules for the timing synthesis of a workflow model. Based on

that almost all workflow models have a free-choice characteristic [2], [9], Section 5 provides an

effective algorithm decomposing free-choice and acyclic TCWF-net into a set of

T—components and a boundedness verification method. Section 6 presents a case study. Finally,

Section 7 makes conclusions.

2. Basic concepts

 A basic process modeling language [2] based on a standard process definition notation, which

is proposed by Workflow Management Coalition (WfMC) [15], can be used to represent the

components of a workflow in a simple and direct way. In this language, processes are modeled

using two types of objects: node and transition. A node is classified into two subclasses: task

and choice/merge coordinator. The task, graphically represented by a rectangle, represents the

work to be done to achieve some objectives. It can be used to build implicitly sequence, fork,

and synchronous structures. The task is further classified into four types: activity, sub-process,

block, and null task, which are necessary for the process modeling. However, for simplicity, all

kinds of tasks are treated only as activities in our proposed model mapping method. The

choice/merge coordinator, graphically represented by a circle, is used to build explicitly choice

 6

IEEE Transactions on Systems, Man, and Cybernetics-Part A:Systems and Humans,
Vol.33, No.2, March 03, pp.179-193

and merge structures. A transition linking two nodes in a graph is graphically represented by a

directed edge and used to specify the execution order and flow between its tail and head nodes.

Figure 1 shows three modeling objects. Because the iteration structure is nested in a task that

has an exit condition defined for iterative purposes, a DNG-based workflow model built by the

basic process modeling language must be structurally acyclic. Refer to [2] for more details.

task choice/merge transition
Figure 1. Graphic representation of three modeling objects

 In order to incorporate the necessary timing information into a workflow model, we need to

extend this basic process modeling language by considering its internal and external timing

constraints.

 As mentioned before, the internal timing constraint defined in an activity refers to execution

duration and executable time span, where the executable time span managed by a responsible

resource agent ranges from the time of task allocation to allowable latest completion time.

Given a workflow model, designers can assign execution duration and executable time span

(during which the activity can be executed) to every individual activity based on their

experience and expectation from the past execution.

 In order to specify external timing constraints, i.e., the temporal dependency relations

between different activities, the concepts of LBC and UBC need to be introduced. Assuming

that A and B represent two activities, LBC(A, B, DL) states that the duration between source

event happened in running time of activity A and destination event happened in the running

time of activity B must be greater than or equal to a lower bound time value DL. UBC(A, B, DU)

demands that the time distance between source event happened in the running time of activity A

and destination event happened in the running time of activity B must be smaller than or equal

to an upper bound time value DU. Here, we call A and B as source and destination activities,

respectively. For simplicity, LBC/UBC used in this paper refers only to the timing constraints

between the end execution event of the source activity and start enabled event of the destination

activity. Assuming that activity A completes its execution at time T0 and the execution duration

of activity B is D(B), and the timing constraints of LBC(A, B, DL) and UBC(A, B, DU) are

imposed on B, we define the enabled time span of activity B as (T0+DL, T0+D(B)+DU). These

 7

IEEE Transactions on Systems, Man, and Cybernetics-Part A:Systems and Humans,
Vol.33, No.2, March 03, pp.179-193

timing constraints are assigned according to the relevant organizational rules, laws,

commitment, technical demands, and so on. They can also be selected based on the workflow

performance requirement.

 A merge node is only used for the description of the logic relation between its input and output

nodes. Thus its enabled time span and execution duration are both set to zero. Then B with

LBC(A, B, DL) or UBC(A, B, DU) cannot be a merge node. If LBC(A, B, DL) or UBC(A, B, DU)

is needed, in which B is a merge node, a dummy activity is used to specify this situation. It

means that the transaction instance routes out as soon as it reaches a merge node. However, the

choice node may include actions such as the output path selection. Then it can be treated as an

activity and the timing constraint mentioned above can be imposed on it. Also, the choice

node’s output path selection can be specified through assigning different timing constraints

(executable time span) to different succeeding paths. For the sake of simplicity, we assume that

all the time information is given in a same time unit.

(0,5)/4 (0,4)/2
A1 A2(1,3)

Figure 2. An example of the timing constraints in DNG-based workflow model

 A simple example in Fig. 2 is used to show the specification of time information in a

DNG-based workflow model. (LBC, UBC)=(1,3) on the edge from A1 to A2 specifies the

temporal dependency relation between activities A1 and A2 as an external timing constraint. A2’s

(0, 4)/2 specifies A2’s internal time constraints, i.e., its defined executable time span is [T1+0,

T1+4] if it starts enabling at time T1; and its execution duration is 2. A1’s internal time

constraints can be interpreted similarly. If A1 completes its execution at T0, the start enabled

time span of A2 is [T0+1, T0+3], and A2’s enabled time span is [T0+1, T0+2+3]. In the run-time

environment, because of the timing constraint imposed by the enabled time span, A2’s actual

executable time span will be [T1+0, Min{T0+2+3,T1+4}], where T0+1≤T1≤ T0+3.

 Petri nets as a design language for the specification of a complex workflow, as well as a

powerful analysis technique for the correctness of workflow procedures are discussed in [1, 4].

Some basic concepts about PN [11], [17] are given as follows:

Definition 1: PN = (P, T, F) is a free-choice PN iff ∀ t1, t2∈T, ●t1∩●t2 ≠ φ implies ●t1 =●t2; and it

is a marked graph iff each place p has exactly one input and one output transition.

 8

IEEE Transactions on Systems, Man, and Cybernetics-Part A:Systems and Humans,
Vol.33, No.2, March 03, pp.179-193

Definition 2: PN = (P, T, F) and PN1 = (P1, T1, F1) are two PN. PN1 is a subnet of PN iff P1 ⊆ P,

T1 ⊆ T and F1 = F ∩ ((P1 × T1)∪(T1 × P1)). PN1 is generated by T1 iff P1 = T1
•∪•T1 (where the

presets and postsets are taken w.r.t. F). It is called a T -component of PN iff PN1 is the subnet

generated by T1 and, ∀p∈P1: ⎥•p∩T1⎟ ≤1 ∧⎮p•∩T1⎮≤1.

 A PN modeling the process aspect of workflow is called a WorkFlow net [1].

Definition 3: A Petri net PN is called WorkFlow net (WF-net) if and only if:

（1） PN has two special places: ε and θ. Place ε is a source place: ● ε = φ; Place θ is a sink

place: θ● = φ.

（2） If we add a new transition t to PN which connects place θ with ε, namely, ●t={θ}, t●

={ε}, then the resulting PN is strongly connected.

A WF-net has proper termination property if starting from the initial state (with only one

token in place ε), it is always possible to reach the state with only one token in place θ. A

WF-net with proper termination property is sound if it has no dead transitions, i.e., for each

transition t, it is possible to reach (starting from initial state) a state where t is enabled. If there

are no structural conflicts in a workflow model built by the basic process modeling language

mentioned above, its corresponding WF-net must be sound [1].

Obviously, a WF-net gives only process control specification of a workflow model. To

realize the time dimension verification and analysis of a workflow model, its temporal behavior

should be specified, and then some extensions with time information to the WF-net are needed.

 Different ways exist to introduce time into PN. Timed Petri nets treat a timing constraint as a

single delay [18-20]. Time Petri nets treat a timing constraint as a delay pair consisting of lower

and upper bounds [21-23]. Timing Constraint Petri Net (TCPN) [16], which extends PN by

adding minimum, maximum, and durational timing constraints to places or transitions,

synthesizes all the timing constraints considered in previous two cases. Considering the timing

constraints to be specified in a workflow model, we propose to use TCPN for workflow

modeling and analysis.

 In TCPN, a time pair [dmin(x), dmax(x)] is associated with node x∈P∪T. [dmin(p), dmax(p)]

denotes the period that p can enable its output transition after a token arrives. The token enabled

time of p is defined as [Ka(p)+ dmin(p), Ka(p)+ dmax(p)], where Ka(p) is the token arrival time at p.

[dmin(t), dmax(t)] represents the period that t is fireable after it is enabled. If p is the only input

 9

IEEE Transactions on Systems, Man, and Cybernetics-Part A:Systems and Humans,
Vol.33, No.2, March 03, pp.179-193

place of t, t’s fireable duration is determined collectively by Ka(p), dmin(p)/dmax(p) and

dmin(t)/dmax(t) [16]. A transition is schedulable means that it is firable and can complete its firing

successfully. The formal semantics of TCPN can be used in a workflow model to specify

naturally the situations such as the exception handling or selection of a succeeding routing path.

In TCPN, all the tokens (denote as TK’s) used for enabling a transition will be preserved during

the transition’s firing. If all the transitions enabled by TK’s fail to complete their firing, TK’s

will be trapped in their corresponding place. This kind of state evolving mechanism together

with the relative and absolute time mode, as well as the weak firing rules make the TCPN

particularly suitable for the specification about the execution of a workflow model in the

run-time environment.

 Based on the concept of a WF-net and TCPN, the definition of Timing Constraint WorkFlow

net（TCWF-net）is given below:

Definition 4: A TCWF-net is a four tuple <WF-net, C, α, M>, where:

WF-net=(P, T, F) is a WorkFlow net;

P ={p1, p2, ···, pm} is a set of places representing the state of a transaction instance or

the condition of its output transitions;

T ={t1, t2, ···, tm} is a set of transitions representing activities of workflow;

F is a set of directed arcs linking places and transitions, and used to describe

precedence relations among activities;

C is a set of non-negative real number pairs [dmin, dmax] related to each transition or place,

which is used to represent the imposed timing constraints of an activity or system state;

α is a set of firing delays associated with transitions, where α(t) represents the execution

duration of transition t mapped from its corresponding activity;

M is a set of m-dimensional markings where M(p) denotes the number of tokens

representing the number of transaction instances in p.

 What we should note here is that a transition in the TCWF-net corresponds to an activity of

workflow; however, a transition defined in the basic process modeling language mentioned

above is used to specify the execution order and flow between its tail and head nodes.

In addition, EF(t) (LF(t)) denotes the earliest fireable beginning time (latest fireable ending

time) of t; EE(t) (LE(t)) denotes the earliest enable beginning time (latest enable ending time) of

 10

IEEE Transactions on Systems, Man, and Cybernetics-Part A:Systems and Humans,
Vol.33, No.2, March 03, pp.179-193

t; Fbegin(t) (Fend(t)) denotes the time at which t begins (ends) firing.

 It should be noted that a TCWF-net is used to specify the dynamic behavior of the life-cycle

of transaction instances. For the verification and analysis of a workflow model, we have to

consider the mapping from a workflow model built by the extended process modeling language

to a TCWF-net.

3. Model mapping
 According to the semantic properties of workflow models built by most of the workflow

modeling tools (see e.g. [1], [5]), we know that most of them enjoy the free-choice

characteristic. We use Fig. 3 to explain why a practical workflow model should exhibit this

characteristic. Assuming that a transaction instance leads to two tokens (branches of the same

instance) in nodes D and A respectively in Fig. 3(a). Because a transaction instance’s routing

depends only on the coordination between its attributes and the workflow control data, D can

chooses R1 as its output path and A chooses R3. Then synchronous activity B will not take place

and the instance will not terminate successfully. The same result follows from Fig. 3(b) if D

chooses R1 and A chooses R3. Therefore, such non-free-choice structures as those in Fig. 3

should not appear in practical workflow models. Thus, this paper deals with only workflow

models or TCWF-nets with free-choice semantics.

B

D A

R1 R2
R3

R4

X

B

D

R2

A

R3 R4

X

(a) (b)

R1

Figure 3. Two non-free-choice structures

 Now we introduce a model mapping method from a DNG-based workflow model built by the

extended basic process modeling language to a free-choice TCWF-net. Each choice/merge

node D is mapped onto a place pD. For each of D’s output path i, transition is created. Each

activity A is mapped to a transition t

i
Dt

A. If it is in a sequence structure, pA is created as tA’s input

place. However, if A is a synchronous activity, for each of its input path j, a place , whose

output transition is t

j
Ap

A, is created. For the end activity E, a sink place θ is added as the output

place of its mapped transition tE. Finally, the transition in the graphic process modeling

 11

IEEE Transactions on Systems, Man, and Cybernetics-Part A:Systems and Humans,
Vol.33, No.2, March 03, pp.179-193

language is mapped to the directed arc linking corresponding place and transition in the

TCWF-net directly. We have so far completed the topology structure mapping and obtained a

free-choice TCWF-net structure model of a workflow process. Because the workflow model

considered here is free of structural conflicts (deadlock), the resulting TCWF-net must be

sound [1].

 During the model mapping, we must also consider the imposed timing constraints in a process

model besides the structure mapping.

 In a TCWF-net, the state of a transaction instance is specified by a place. Hence the timing

dependency relations (LBC and UBC) between activities, which are managed by the workflow

manager or workflow engine, are mapped to a time pair in a place. The time pair [dmin(p),

dmax(p)], which is used to specify the enabled time span of its output transition after a token

arrives at p, includes the firing delay of its output transition. However, a UBC, as mentioned

above, constrains the period ranging from the end of its source activity to the start enabling of

its destination activity. It means that DU in UBC(A, B, DU) doesn’t include the execution

duration of activity B. Therefore, the actual [dmin(p), dmax(p)] of p is the enabled time span of its

corresponding activity. For a place p, which is created for the activity (choice node) B in the

LBC(A, B, DL) and/or UBC(A, B, DU), the time pair [dmin(p), dmax(p)] specifying the time

dependency relation is set to [DL, DU+D(B)], [0, DU+D(B)], and [DL,∞] according to three

cases: 1) LBC and UBC are both imposed, 2) only UBC imposed, and 3) only LBC imposed,

respectively. If there is neither LBC nor UBC, the time pair for p is set to [0,∞]. As mentioned

above, due to the fact that the workflow engine handles the routing in a merge node D, the time

pair for pD is set to [0, 0]. Hence, a transition in pD
 ● is executable once it is enabled.

 When a workflow engine is taking care of the control and execution of a workflow instance,

the task is allocated to the resource agent that is responsible for its execution. The executable

duration, i.e., the buffer time that is handled by the corresponding resource agent (executor), is

ranged from the task allocation time to the allowed latest completion time. The time pair [dmin(t),

dmax(t)] is set to the corresponding executable time span defined for the activity t in the

workflow model. If there is no executable time span imposed for the corresponding activity, the

pair is set to [0,∞]. However, the executable time span of the transition created for the merge

node is set to [0,0], implying that a token routes out once it reaches a merge place (the execution

duration of its output transition must be zero).

 12

IEEE Transactions on Systems, Man, and Cybernetics-Part A:Systems and Humans,
Vol.33, No.2, March 03, pp.179-193

 The execution duration of each activity can be deterministic or stochastic. In the deterministic

case, it is mapped to α(t) directly. In the stochastic case, α(t) mapped to a transition in

TCWF-net is the average value of its corresponding random execution duration. In this

situation, time dimension verification or analysis is conducted from the viewpoint of

expectation.

[1,5] [0,4][2][0,5][4]

tA2pA2pA1 tA1

[0,]∞

Figure 4. A TCWF-net fragment

 Let’s use a simple example to illustrate the time information mapping between the two kinds

of workflow models. Fig. 4 is a TCWF-net fragment, which is mapped from the sub-workflow

in Fig. 2. Activities A1 and A2 are mapped onto transitions tA1 and tA2, and then pA1 and pA2 are

created respectively as input places of tA1 and tA2. A1’s internal time constraints (0, 5)/4 is

mapped directly onto tA1’s [0, 5][4], where [0, 5] and [4] correspond to [dmin(tA1), dmax(tA1)] and

α(tA1) respectively. [dmin(tA1), dmax(tA1)]=[0, 5] means that if tA1, which is enabled at time T1, is

said to be firable during the time period from T1+0 to T1+5, which corresponds A1’s executable

time span. tA2’s timing constraints can be interpreted similarly. Because A2’s execution duration

is 2, then the external timing constraint (LBC, UBC)=(1,3) between A1 and A2 is mapped onto

[dmin(pA2), dmax(pA2)]=[1, 3+2]=[1,5]. If tA1’s firing is completed at T0 (i.e., Ka(pA2)=T0), pA2 can

only enable its output transition tA2 during the time from T0+1 to T0+5, which corresponds to

A2’s enabled time span. Since there are no external timing constraints for A1, pA1’s [dmin(pA1),

dmax(pA1)] is set to [0,∞].

 4. Workflow model schedulability verification and synthesis

 As defined in [17], a marking Mn, is said to be reachable if there is a firing sequence σ =(M0 t1

M1 ··· ti Mi ··· tn Mn) or simply (t1, t2,···,tn) that transforms M0 to Mn. Due to timing constraints, to

prove that Mn is reachable in TCWF-net, we have to prove that all the transitions in σ are

schedulable with respect to M0. In other words, let tn be the final transition of σ from M0 to Mn,

Mn is reachable if and only if tn and all the transitions that occurred prior to tn are schedulable.

δk(Mn), to be used below, denotes the collection of places and transitions except the first

 13

IEEE Transactions on Systems, Man, and Cybernetics-Part A:Systems and Humans,
Vol.33, No.2, March 03, pp.179-193

transition in the k-th firing sequence from M0 to Mn [16].

 Using TCPN scheduability [16] as reference, we give the definition of the scheduability of a

TCWF-net and then its corresponding verification method.

 It is known that the arrival time of a transaction instance must be taken into account in the

schedulability analysis of a TCWF-net model, which indicates a “strong” characteristic. Thus

we do not distinguish the strong and weak schedulabilities. However, we differentiate local and

global schedulabilities here.

Definition 5: A transition t in marking M of a TCWF-net is locally schedulable iff t’s enabled

marking Mt is reachable from M, dmax(t)-dmin(t)≥α(t) and, ∀p∈●t: dmax(p)-dmin(p)-dmin(t)≥α(t). If

t can complete its firing successfully in marking M of the TCWF-net, it is globally schedulable.

 Obviously, the local schedulability is a necessary condition of the global one. A schedulable

TCWF-net means that all its transitions are globally schedulable.

 Assuming pi∈●t, EE(t)/LE(t) is constrained by token enabled times of all input places of t, i.e.,

EE(t)= (K
i

Max a(pi)+dmin(pi)) and LE(t)= (K
i

Min a(pi)+dmax(pi)). Therefore, assuming that ts is

mapped from the start activity we have the following theorem.

Theorem 1： A locally schedulable transition t in marking M of TCWF-net is globally

schedulable iff LF(t) - EF(t) ≥ α(t), where

 LF(t)= LE(t)

 = (K
i

Min a(pi)+dmax(pi))

 = {F
k

Min end(ts)+ Σ dmax(pmk)}

 pi∈●t, pmk∈δk(M).

EF(t)= EE(t)+ dmin(t)

 = (K
i

Max a(pi)+dmin(pi))+ dmin(t)

 = {F
k

Max end(ts)+Σ dmin(tnk)+ Σα(tnk)+Σ dmin(pmk)} + dmin(t)

 pi∈●t, tnk, pmk∈δk(M).

 Theorem 1 is derived directly from the TCPN theory. A trivial modification of the proof of

related theorems in [16] can prove it. Its proof is omitted here. However, two points need to be

noted here. First, our TCWF-net is sound. When the workflow model is instantiated to a

 14

IEEE Transactions on Systems, Man, and Cybernetics-Part A:Systems and Humans,
Vol.33, No.2, March 03, pp.179-193

workflow instance by the arrival of a transaction instance, each input place of the enabled

transition t has exactly one token during the model runtime. Then, it is unnecessary to compare

the arrival time of different tokens in the same places. Second, according to the theorems in [16]

p can only enable its output transition during the time span [Ka(p)+ dmin(p), Ka(p)+dmax(p)].

Therefore, if the enabled time of its output transition t is T0, its fireable time-span is [T0+ dmin(t),

Min{T0+dmax(t),Ka(p)+dmax(p)}]. If dmax(p)>dmax(t), Ka(p)+Min{dmax(p), dmax(t)} in formula (4.b)

of [16] is equal to Ka(p)+dmax(t). Obviously, it does not make sense. Thus, it should be replaced

by Ka(p)+dmax(p), the rationality of which can be found easily.

 In the following discussions, “schedulable” refers to “globally schedulable”. According to

Theorem 1, a workflow modeled by a TCWF-net is schedulable if and only if all the transitions

in the TCWF-net are schedulable. To facilitate the use of Theorem 1, Theorem 2 is deduced.

Theorem 2: A TCWF-net is schedulable iff all its synchronous transitions are globally

schedulable and all the remaining transitions are locally schedulable.

Proof: A schedulable TCWF-net implies that every transition is globally schedulable. Thus the

necessity is obvious. If all the synchronous transitions are globally schedulable, all the

transitions preceding these synchronous transitions can complete firing successfully, i.e.

globally schedulable. Thus we need to consider only the transitions behind all the synchronous

transitions along all the possible paths from the source ε to the sink θ. Consider any

non-synchronous transition t. The number of its input places must be exactly 1. Assuming pi∈●t,

we have LF(t) - EF(t)

 = (K
i

Min a(pi)+dmax(pi))-((K
i

Max a(pi)+dmin(pi))+ dmin(t))

 = Ka(pi)+dmax(pi)-(Ka(pi)+dmin(pi)+ dmin(t))

 = dmax(pi)- dmin(pi)- dmin(t).

Since t is a locally schedulable transition, dmax(pi)- dmin(pi)- dmin(t) ≥α(t). Then LF(t) - EF(t)

≥α(t). By Theorem 1, t is globally schedulable. Hence, all the transitions in a TCWF-net are

globally schedulable, or the net is schedulable. �

 Before the schedulability synthesis of a TCWF-net from the aspect of time dimension is

discussed, two relevant concepts of the timing constraints of a transition should be introduced.

In marking Mi of a TCWF-net, t’s schedulable decision span is defined as S(t)= [EF(t), LF(t)-α(t)]

 15

IEEE Transactions on Systems, Man, and Cybernetics-Part A:Systems and Humans,
Vol.33, No.2, March 03, pp.179-193

and its schedulable buffer time Y(t)=LF(t)-α(t)-EF(t). A transition completing its firing

successfully must start its firing during the absolute time span S(t). Y(t) represent the interval

one can manage to start firing a transition. Assigning reasonable S(t) for each transition t and

then the corresponding activity is an important issue for leveraging the process performance

and resource load. Based on the synthesis methods of Forward Computation and Backward

Computation [16], we give some heuristic rules about how to assign S(t) for each t considering

its relative importance, the load of resources allocated for t’s firing, and the influence of its

firing on its succeeding transitions. According to different topological structures of a

TCWF-net, several cases are discussed.

 For transitions in a sequence, OR_join or AND_split structure:

If the resource satisfies the requirement, S(t) and Y(t) of the preceding transition should be

scheduled early and reduced as much as possible respectively to expand the schedulable

decision span of the succeeding transitions. The reason is that there is a total time limit for

a workflow model and then the execution of preceding transitions has influence on

schedulable decision span of all the succeeding transitions. If something goes wrong with

the firing of a preceding transition, the larger Y(t) and abundant S(t) for the succeeding

transitions give them enough time to handle the exception.

 For transitions in an OR_split structure:

One can designate mutually exclusive fireable period [dmin(t), dmax(t)] for the transitions

corresponding to conflict activities, through which the different priorities are set. We can

use it for the specification of the exception handling of time violation or the selection of an

output path in a conflict structure. If transaction instance’s routing in an OR_splict

structure does not depend on its timing attributes, the transitions in this structure can be

treated the same as in sequence structures.

 For transitions in an AND_join structure:

In this synchronous structure, the execution of a succeeding transition cannot begin until

all its preceding transitions complete their firing. Therefore, in order to reduce the mutual

waiting time of individual execution paths, the time constraints for the preceding

transitions must be selected to make them as accordant (according to their succeeding

synchronous transition’s S(t) and Y(t) constrained by different input paths) as possible.

 16

IEEE Transactions on Systems, Man, and Cybernetics-Part A:Systems and Humans,
Vol.33, No.2, March 03, pp.179-193

5. Boundedness verification of a workflow model
 A workflow model is instantiated by multiple transaction instances. Boundedness

verification of a workflow model concerns whether congestion or overflow may occur in the

environment of multi-instances running concurrently. In a TCWF-net, source place ε with a

tokens (transaction instances) arrival rate λ can be viewed as a structure of a transition (with no

input arcs) with firing rate λ connecting to ε. This semantics cause many tokens of multiple

instances reside in the same TCWF-net. A TCWF-net is bounded if every place is bounded.

Then, workflow’s boundedness verification corresponds to verify if there is a place that can

have an infinite number of tokens.

To realize the boundedness verification of a TCWF-net, an extended net PN =),,(FTP [1]

is defined. PN is the PN obtained by adding an extra transition which connects place θ and ε

to a TCWF-net PN, where

t

P =P, T =T∪{t}, and F =F∪{(θ,t),(t,ε)}. Based on the TCWF-net

mapped from the DNG-based workflow model, the extended free-choice TCWF-net is obtained

by adding a new transition t between the intial and end places, i.e., ●t={θ}, t● ={ε}.

We know each workflow model describes the life-cycles of several kinds of transaction

instances. Corresponding to each kind of transaction instances, there is a routing path in a

workflow model. Because the original DNG-based workflow model built by the basic process

modeling language is structurally acyclic, there is no iteration structure in the TCWF-net

obtained through the model transformation. Heuristically, we decompose an extended

free-choice TCWF-net specifying a workflow model to a set of T-components representing the

routing path of each kind of transaction instance. Based on the resulting set of T-components, a

boundedness verification method of the corresponding TCWF-net can be deduced.

 Note that the algorithm discussed below focuses only on a TCWF-net’s structure

decomposition, the corresponding time information of every transition or place in its subnets is

unchanged. Also, for simplicity, we use PN= (P, T, F) to represent an extended TCWF-net.

Before the decomposition algorithm is introduced, some relevant concepts are given below.

Definition 6: An elementary path in PN= (P, T, F), called a path for short, is (x1, x2, …, xk) such

that arc (xi, xi+1) exists 1≤ i ≤ k-1, and xi=xj implies i=j, 1≤ i, j ≤ k where xi∈P∪T. It is called an

(elementary) circuit if xi=xj, 1≤ i, j ≤ k implies i=1 and j=k. PN1= (P1, T1, F1) is a subset of PN=

(P, T, F), path= {t0, p1, t1···pm, tm} in PN is a transition path of PN1iff:

 It is a path

 t0, tm∈ T1

 17

IEEE Transactions on Systems, Man, and Cybernetics-Part A:Systems and Humans,
Vol.33, No.2, March 03, pp.179-193

 pj ∉P1, 1≤ j ≤ m, and tj ∉T1, 1≤ j < m

Symmetrically, path= {p0, t1, p1···tm, pm} in PN is a place path of PN1 iff:

 It is a path

 p0, pm∈P1

 tj ∉T1, 1≤ j ≤ m, and pj ∉P1, 1≤ j < m

 A transition path defined here has the same semantic as a nice path in [24].

Definition 7: A place p in PN = (P, T, F) is a choice place iff | p•| ≥ 2. Suppose that a path or

circuit PN1= (P1, T1, F1) is a subnet of PN = (P, T, F) and p' is the first or source place. Given a

choice place p∈ P1, its choice degree is defined as the number of choice places in the path from

place p' to p in PN1.

ts

tA1

tA4

tA6

tA0

tE

ε

θ

1
4Ap 2

4Ap

tA5

pD

pC

1
5Ap

1
Ct

Dt

pA0
pA1

pE

pA6

t

ts

tA1

tA4

tA7

tA0

tE

ε

θ

1
4Ap 2

4Ap

tA5

pD

pC

1
5Ap

2
Ct

Dt

pA0
pA1

pE

pA7

t

ts

tA1
tA2

tA3

tA4

tA6 tA7

tA0

pB

pA

tE

ε

θ

1
4Ap 2

4Ap

2
At1

At

tA5

pD

pC

1
5Ap

2
Ct

1
Ct

Bt

Dt

2
5Ap

pA0
pA1

pE

pA6

pA2 pA3

pA7

t

ts

tA6

tA0

tE

ε

θ

1
4Ap

tA5

pD

pC

1
5Ap

1
Ct

Dt

pA0

pE

pA6

t

ts

tA4

tA7

tA0

tE

ε

θ

1
4Ap

tA5

pD

pC

1
5Ap

2
Ct

Dt

pA0

pE

pA7

t

(a) (b) (c) (d) (e)

tA4

 18

IEEE Transactions on Systems, Man, and Cybernetics-Part A:Systems and Humans,
Vol.33, No.2, March 03, pp.179-193

ts

tA1
tA2

tA4

tA7

tA0

pB

pA

t
E

ε

θ

1
4Ap 2

4Ap

1
At

tA5

pD

pC

1
5Ap

2
Ct

Bt

Dt

2
5Ap

pA0
pA1

pE

pA2

pA7

t

ts

tA1

tA3

tA4

tA7

tA0

pB

pA

tE

ε

θ

1
4Ap 2

4Ap

2
At

tA5

pD

pC

1
5Ap

2
Ct

Bt

Dt

2
5Ap

pA0
pA1

pE

pA3

pA7

t

ts

tA1
tA2

tA4

tA6

tA0

pB

pA

t
E

ε

θ

1
4Ap 2

4Ap

1
At

tA5

pD

pC

1
5Ap

1
Ct

Bt

Dt

2
5Ap

pA0
pA1

pE

pA6

pA2

t

ts

tA1

tA3

tA4

tA6

tA0

pB

pA

t
E

ε

θ

1
4Ap 2

4Ap

2
At

tA5

pD

pC

1
5Ap

1
Ct

Bt

Dt

2
5Ap

pA0
pA1

pE

pA6

pA3

t

(f) (g) (h)
(i)

Figure 5. The extended TCWF-net and its decomposition result

Definition 8: Suppose that R is a circuit (path) set. A choice place p is proper iff ∀circuit (path)

in R, p is not on it or p’s choice degree is the least.

Let’s use an example to explain Definitions 6-8. PN1= (P1, T1, F1) in Fig. 5(b) is a circuit subnet

of PN= (P, T, F) in Fig. 5(a). For path {ts, pA1, tA1, , t2
4Ap A4} in PN, ts, tA4∈ T1 and its other

elements do not belong to PN1. Thus it is a transition path of PN1. However, because and t1
5Ap A5

belong to PN1, path {ts, pA1, tA1, , t2
4Ap A4, , t1

5Ap A5} is not a transition path of PN1. Similarly, {pC,

, p2
Ct A7, tA7, pD} is a place path of PN1.

 19

IEEE Transactions on Systems, Man, and Cybernetics-Part A:Systems and Humans,
Vol.33, No.2, March 03, pp.179-193

ts

tA3

tA6

pB

pA

tE

ε

θ

2
At

tA5

pD

pC

1
Ct

Bt

Dt

2
5Ap

pE

pA6

pA3

t

ts

tA1
tA2

tA6

pB

pA

tE

ε

θ

1
At

tA5

pD

pC

1
Ct

Bt

Dt

2
5Ap

pE

pA6

pA2

t

ts

tA1
tA2

tA7

pB

pA

tE

ε

θ

1
At

tA5

pD

pC

2
Ct

Bt

Dt

2
5Ap

pE

pA2

pA7

t

(a) (c) (d)

ts

tA3

tA7

pB

pA

t
E

ε

θ

2
At

tA5

pD

pC

2
Ct

Bt

Dt

2
5Ap

pE

pA3

pA7

t

(b)
Figure 6. A different decomposing process of the TCWF-net in Fig. 5(a)

If a token reaches a choice place, it must choose an output path (transition). In Fig. 5(a), pA

and pC are two choice places. To decide their choice degree, let’s consider circuit PN1 in

Fig.5(b). Since only pC in the path from ε to pC is a choice place, pC’s choice degree in PN1 is 1.

Now consider PN2= (P2, T2, F2) of Fig. 6(a). Since there are two choice places (pA and pC) in the

path from ε to pC, pC’s choice degree in PN2 becomes 2.
Suppose that the circuit in Fig. 5(b) is the only element of R. Then pC is a proper choice place.

However, if the circuit of Fig. 6(a) is also in R, the proper choice place is not pC but pA. The

reason is that although pC’s choice degree is the minimal in the circuit of Fig. 5(b), it is not the

minimal in the circuit of Fig. 6(a). Since pA belongs to only the circuit of Fig. 6(a), and its

choice degree is the minimal in that circuit, it is a proper choice place in R.

 Based on these definitions, we discuss in detail about the workflow model decomposition. It

has been proved in [24] that each live and safe free-choice PN is covered by a set of strongly

connected T-components. Also, an algorithm (Algorithm 7.4 in [24]) is defined to construct a

T-component from an arbitrarily selected transition. Obviously, each T-component of a

TCWF-net is corresponding to the routing path of a specific transaction instance. As mentioned

before, the resulting extended TCWF-net considered in this paper is sound. Hence, one can

 20

IEEE Transactions on Systems, Man, and Cybernetics-Part A:Systems and Humans,
Vol.33, No.2, March 03, pp.179-193

assure its liveness and safeness. Next, we extend the algorithm in [24] to decompose a sound

free-choice extended TCWF-net PN= (P, T, F) into a set of T—component as follows.

Algorithm 1 (Decomposition)

Step 1: Corresponding to an arbitrarily selected transition t in p1●={t1, t2, ···, tn}, where

p1∈PC={p| |p•| ≥2}, an circuit PN1 = (P1, T1, F1) passing t is constructed. In addition, PS = φ and

R1 = {PN1}, where PS is a choice place set and R1 is a subnet set.

Step 2: Repeat the following steps until ∀ PNj =(Pj, Tj, Fj)∈R1, Ψj ={p| p∈Pj ∧ |p• | ≥2 ∧ p∉PS}

is empty. Denote the resulting subnet set as R=R1={PN1, PN2,···, PNn}.

 2.1: R2= R1, PL=φ;

 2.2: For every PNj= (Pj, Tj, Fj)∈R2, if Ψj ={p| p∈Pj ∧ |p•| ≥2 ∧ p∉PS} is nonempty, choose the

choice place p∈Ψj whose choice degree is the least one in Ψj and PL= PL∪{p};

 2.3: For every place pk∈PL, if pk generated from Ψk of PNk∈R2 belongs to Ψm (m≠k) of

PNm∈R2 and the choice degree of pk is not the least one in Ψm, then PL= PL\{pk};

 2.4: PS = PS ∪ PL, and for every place pl∈PL do

 For every PNj = (Pj, Tj, Fj)∈R2, if pl∈Pj, there must be a nonempty transition set

η={t|t∈pl
•∧t∉Tj}. Then for every transition t in η, an arbitrary circuit PNt={Pt, Tt, Ft}

which goes down from source ε to pl along PNj and then passes t is constructed and

added to R1;

 Step3: For every PNk={Pk, Tk, Fk}∈R, repeat the following exhaustively:

 If there is t″∈Tk with a nonempty set {p″| p″∈t″•∧ p″∉Pk}, then for every p1∈t″•\Pk, an

arbitrary transition path path = {t0, p1, t1···pm, tm} is constructed and merged into PNk,

where t″= t0, tm∈Tk. However, if there are choice places in the merged path for the new

PNk, R′1={PNk}, the following steps are repeated until ∀ PNj = (Pj, Tj, Fj)∈R′1, the set

Ψ′j={p′||p′•|≥2 ∧ p′∈Pj ∧ p′∉PS} is empty. Then the result R′1 is merged into R.

 3.1: R′2= R′1, PL′=φ;

 3.2: For every PNj= (Pj, Tj, Fj)∈R′2, if Ψ′j={p′| p′∈Pj ∧ |p′•| ≥2∧ p′∉PS} is nonempty, each p′

must belong to a path from t0 to tm. Choose the choice place p′∈Ψ′j whose choice

degree in the path from t0 to tm is the least one in Ψ′j, and let PL′= PL′∪{p′};

 3.3: For every place p′r∈PL′, if p′r generated from Ψ′r of PNr∈R′2 belongs to Ψ′s (r≠s) of

PNs∈R′2 and the choice degree of p′r is not the least one in the path from t0 to tm

 21

IEEE Transactions on Systems, Man, and Cybernetics-Part A:Systems and Humans,
Vol.33, No.2, March 03, pp.179-193

(inΨ′s), then PL′= PL′\{p′r};

 3.4: PS = PS ∪ PL′, and for every place p′l∈PL′ do

 For every PNj =(Pj, Tj, Fj)∈R′2, if p′l∈Pj, a nonempty post transition set η′={t′|t′∈p′l•(in

PN)∧t′∉Tj} exists. Then for every transition t′∈η′, there must be a place path

path1={p′l, t′,··· p″′} in which only p′l and p″′ belong to the transition path from t0 to tm

in PNj . Use path1 to replace the corresponding part from p′l to p″′ of the transition path

from t0 to tm in PNj to obtain and add a new subset PNt′ to R′1;
 In Algorithm 1, Step 1 is used to construct a circuit PN1 (subnet of PN) passing one arbitrary

output transition of an arbitrary choice place in PN. Obviously, it must contain source and sink

places. For example, Fig. 5(b) and Fig. 6(a) can be viewed as two circuits constructed

respectively from choice place pC’s output transition and choice place p1
Ct A’s output transition

. The choice place set P1
At C contains all the choice places in PN. In the TCWF-net of Fig. 5(a),

PC ={pA, pC}. PS represents the choice place set in which all the choice places have been

investigated and selected to propagate new subnets.

Step 2 finds all the circuits generated from PN1. In each iteration of Step 2, some proper

choice places of PC\PS are investigated and selected to be merged into PS. Steps 2.2 and 2.3

select all the proper choice places in PC\PS into PL. Next, for each circuit (of current R2) in

which one (only one) proper choice place p∈PL is located, Step 2.4 propagates |p•|-1 (p•

represents p’s output transitions set in PN) circuits corresponding to |p•|-1 new place paths of p

and merges them into R1 (R2 of next iteration). Obviously, each choice place can only be

selected to be a proper choice once, which guarantees that each arbitrarily constructed circuit in

Step 2.4 is new for R1.

During each iteration of Step 2, all the proper choice places of PC\PS in current R2 are merged

into PS. They are put into PS in an ascending sequence of their choice degrees. Then, when a

choice place p is put into PS, the choice places with less choice degree in PNj must have been in

PS and |p•|-1 circuits are created for each circuit PNj containing p. Therefore, if p carries the

maximal choice degree in every PNj∈R1, then all the circuits passing p and its preceding choice

places are included in R1. Otherwise, Step 2 will continue its iteration.

Based on Algorithm 7.4 [24] to grow a T-component from a given single transition, Step 3

extends every subnet in R from its fork transitions (each of which has multiple outputs in PN),

and obtains the corresponding T-components. Its validity is demonstrated in [24]. However, it is

possible that the new merged transition paths in Step 3 include new choice places that do not

belong to PS. In this situation, there must be new subnets that are derived from the choice places

in the new merged transition paths of PNj. Then Steps 3.1-3.4 (the proper choice place is in path)

 22

IEEE Transactions on Systems, Man, and Cybernetics-Part A:Systems and Humans,
Vol.33, No.2, March 03, pp.179-193

similar to Steps 2.1-2.4 (the proper choice place is in circuit) are needed to construct and merge

all these new subnets into R.

Panagos and Rabinovich [24] demonstrated the existence of a transition path path

corresponding to place p1 in Step 3. In fact, according to the characteristics of a sound

free-choice extended TCWF-net (every closed loop must cover source place ε and sink place θ),

every path starting from t∈PNi can return to PNi and the join node must be a transition.

Otherwise, there must be a join place and it is not safe, then the TCWF-net is not sound.

Symmetrically, it can also be proved in Step 3.4 (Step 2.4 is similar to Step 3.4) that the place

path starting from p′l must return to another place p″′ in path. The reason is that if a join place is

not in path, then the return node of path1 to PNi is a place or a transition distinct from tm. These

two situations will destroy the soundness of an extended TCWF-net. If the return node is in

path but not a place, it also conflicts with the soundness of the TCWF-net. Hence, the

conclusion of the existence of the place path path1 is derived.

 In this algorithm, each place in every transition generating net is treated only once, i.e., either

in a circuit or transition path. Therefore, we can assure that each place has exactly one input and

one output arc, and each element in the resulting set R is a marked graph, then a T-component.

 Algorithm 7.4 in [24] focuses on how to generate a T-component from an arbitrarily selected

transition. Algorithm 1 demonstrates how to obtain all the T-components contained in a

TCWF-net. From the analysis mentioned above we can draw the conclusion: The algorithm can

decompose every free-choice extended TCWF-net PN={P, T, F} to R, a set of all

T-components that can be derived from PN. Obviously, each T—component net in R

corresponds to a processing procedure of a kind of transaction instance, i.e., a routing path of a

specific transaction instance in a workflow model.

 Obviously, the worst case is that the number of possible T–components could grow

exponentially as the number of choice places increases in a TCWF-net. Then the decomposition

algorithm must be of exponential time complexity. However, the sum of the iteration number in

Steps 2 and 3 is at most |PC|, then the algorithm can terminate in a polynomial number of

arithmetic operations. On the other hand, Steps 2 and 3 in our brute force algorithm can be

carried out concurrently, which means each circuit generated in Step 2 can be processed by Step

3 immediately. If multi-processors are used, this property can improve the time performance of

the algorithm.

 Now we demonstrate how to verify the boundedness of a TCWF-net PN specifying a

workflow process based on the resulting T-components. Let’s suppose that PN including k

transitions is mapped from a workflow model built for the processing of n kinds of transaction

instances {I1, I2,···, In}, and each kind of transaction instance Ii accounts for a certain proportion

 23

IEEE Transactions on Systems, Man, and Cybernetics-Part A:Systems and Humans,
Vol.33, No.2, March 03, pp.179-193

of all the transaction instances processed by this workflow model. So we have vector β ={β1,

β2,···,βn} satisfying β1+β2+···+βn=1, where βi ≥0 is the percentage of Ii in the total number of

transaction instances. To describe distinctly the constituent transitions of a T-component, we

construct a transition vs. T-component matrix Bn×k:

bij=
if T-component PNi includes transition tj

if T-component PNi doesn't include transition tj

1

0

 We assume that the arrival of transaction instances is a stochastic process, and the total arrival

rate is λ. Then, the arrival rate of transaction instance Ii, λi＝λ*βi. To complete Ii’s processing,

each transition in T-component PNi should fire exactly once. Let λI={λ1, λ2, …, λn}, the

transaction instance input rate of each transition in PN can be obtained by calculating λt =

λI*Bn×k, where the ith item λti of λt represents ti’s token arrival rate. Then the necessary and

sufficient condition of the boundedness of the TCWF-net-based workflow model can be

deduced as below.

Theorem 3: A sound TCWF-net PN={P, T, F} is bounded iff ∀ti∈T, α(ti)*λti<1.

 This theorem can be easily proved and thus its proof is omitted here. However, it should be

noted here that “≤” cannot be used in the inequation. The time span of any activity’s execution

is deterministic or stochastic. If transition ti satisfing α(ti)*λti=1, its boundedness depends on

the distribution functions associated with ti. For instance, for deterministic timing, the number

of tokens in input place p of transition ti remains bounded. However, for exponentially

distributed random time, the marking of p is a null-recurrent state, thus destroying the

boundedness.

 When a workflow model is deployed in practice, its arrival rate of transaction instances is

only an estimated value. Even if its boundedness has been verified, it is interesting to know how

far away this model is from its unboundedness. Using Theorem 3, one can compute

Max{α(ti)*λti}. Then the value 1- Max{α(ti)*λti} can be viewed as the boundedness distance of

a bounded workflow model. On the other hand, the transition with the maximal value of

α(ti)*λti must be the potential bottleneck of the workflow model, which is valuable information

for system managers.

 24

IEEE Transactions on Systems, Man, and Cybernetics-Part A:Systems and Humans,
Vol.33, No.2, March 03, pp.179-193

6. A case study

 Now we use an example to illustrate the application of our approach. Fig. 7(a) is a DNG-based

workflow model built by the extended basic process definition language. Through the

application of the model mapping method, the TCWF-net in Fig. 7(b) is obtained. During the

topology structure mapping, a transition tAi is created for each activity Ai, and the label of its

input place in a sequence structure is pAi. The synchronous transition tA4’s two input places are

labeled as and , respectively. The choice/merge nodes A, B, C, and D are mapped as

places p

1
4Ap 2

4Ap

A, pB, pB C, and pD respectively. The labels of pA’s (pC’s) two output transitions are and

 (and). Similarly, the output transitions of p

1
At

2
At 1

Ct
2
Ct BB and pD are labeled as tB and tB D

respectively. The start activity S is mapped to the source ε and transition ts, and a sink place θ is

added as the output place of transition tE. In order to simplify the figure, some labels mentioned

above are omitted in Fig. 7. Also, the specification of imposed timing constraints is transformed

from the DNG in Fig. 7(a) into the TCWF-net in Fig. 7(b).

 25

IEEE Transactions on Systems, Man, and Cybernetics-Part A:Systems and Humans,
Vol.33, No.2, March 03, pp.179-193

(0,8)/6

(1,5)/4 (0,6)/5

(0,4)/3

A

(2,5)/4 (3,7)/3

E

a b

(2,8)

S

A1

A5

A2 A3

A6 A7

(0,5)/3
A4

(2,4)[1]

(1,2)

(0,2)(0,2)

(2,8)

(1,3)

(0,2)

(3,9)/5
A0

(5,11)

(5,6)

(0,2)[0]

(0,2)

(0,0)/0

(0,0)/0

(0,3)

(0,2)[1]

[0,0][0]

[0,8]

[1,2][0]

[0,6][5][1,5][4]

[2,5][4]

[5,9]

[0,4][3]

[0]

[0,8]

[0,2][0]

ts

tA1

tA2 tA3

tA4

tA6 tA7

[0,4]

[0,0]

[0,5][3]

[5,16]

tA0
[3,9] [5] [6]

pB

pA

tE

[0,5]

[0]

[0,0]

[2,11]

[0,0][0]

[0,]∞

ε

θ

1
4Ap 2

4Ap

2
At

1
At

[0,2][1] [2,4][1]

B

C

D

[1,5]

[2,8]

tA5

[1,7]

[3,7][3]

pD

pC

1
5Ap

2
Ct

1
Ct

Bt

Dt

2
5Ap

(0,0)[0]

(0,0)[0]

(1,2)[0]

(0,2)

[0,5]

c d

(a) (b)

Figure 7. Model mapping from the DNG-based workflow model to TCWF-net

 In Fig. 7(b), one can find easily that dmax(tA6)-dmin(tA6)=5–2 < 4 =α(tA6) and dmax(pA7)-

dmin(pA7)- dmin(tA7) =5– 1– 3 = 1 < 3=α(tA7). Hence, neither of tA6 and tA7 is locally schedulable

and then globally schedulable. For synchronous transition tA4, one can calculate dmax()-

d

1
4Ap

min()- d1
4Ap min(tA4) =9 – 5 – 0 = 4, dmax()- d2

4Ap min()-d2
4Ap min(tA4)= 11 – 2 – 0= 9, and dmax(tA4)-

dmin(tA4)= 5 - 0 = 5. Their results are all greater than α(tA4)= 3. Thus tA4 is locally schedulable.

Now, let’s consider tA4’s global schedulability. There are two paths δ1= (ts, pA0, tA0, , t1
4Ap A4) and

δ2= (ts, pA1, tA1, , t2
4Ap A4) from ts to tA4, then

 26

IEEE Transactions on Systems, Man, and Cybernetics-Part A:Systems and Humans,
Vol.33, No.2, March 03, pp.179-193

 EF(tA4)= Max{[Fend(ts)+ dmin(pA0)+ dmin(tA0)+ α(tA0)+ dmin()], 1
4Ap

 [Fend(ts) + dmin(pA1)+ dmin(tA1)+ α(tA1)+ dmin()]}+d2
4Ap min(tA4)

 = Max{[Fend(ts)+5+3+5+5], [Fend(ts)+0+0+6+2]}+0

 = Max{[Fend(ts)+18], [Fend(ts)+8]}

 = Fend(ts)+18

 LF(tA4) = Min{[Fend(ts)+ dmax(pA0)+ dmax()], 1
4Ap

 [Fend(ts) + dmax(pA1)+ dmax()]} 2
4Ap

 = Min{[Fend(ts) +16+9], [Fend(ts)+8+11]}

 = Fend(ts) +19

LF(tA4) - EF(tA4)= Fend(ts)+19 - Fend(ts)-18 =1 < α(tA4) =3. From Theorem 1, we know tA4 is not

globally schedulable. Then, all the transitions behind tA4 along all the possible paths from the

source place ε to the sink place θ are unschedulable. Similarly, we can verify that the remaining

transitions , , t1
At 2

At A2, and tA3 are locally schedulable.

However, if pA0’s timing constraint [dmin(pA0), dmax(pA0)]=[5,16] is replaced with [3,14]

(corresponding to the external timing constraints between start activity and activity A0 is

changed from [5,11] to [3, 9]), it can be verified easily now that transition tA4 is globally

schedulable. To make tA6 and tA7 locally schedulable, their [dmin(t), dmax(t)] are relaxed and set be

[1,6] and [1,7], respectively. Synchronous transitions tA4 and tA5 are both globally schedulable,

and all other transitions are locally schedulable, and then from Theorem 3 we know that the

TCWF-net in Fig. 7(b) is now schedulable.

To show schedulability synthesis of the synchronous structure in this TCWF-net, we

consider input paths δ1= (ts, pA0, tA0, , t1
4Ap A4) and δ2= (ts, pA1, tA1, , t2

4Ap A4) of synchronous

transition tA4 independently. If only δ1 (δ2) exists, the schedulable decision span of tA4 is

S(tA4)=[Fend(ts)+16, Fend(ts)+21] (S(tA4)=[Fend(ts)+8, Fend(ts)+17]). It means that, to complete its

firing successfully, tA4 should start firing in [Fend(ts)+16, Fend(ts)+21]([Fend(ts)+8, Fend(ts)+17]).

Although tA4 is schedulable now, if the sub-transaction instance in δ2 is usable for tA4 at Fend(ts)+8,

it must await the sub-transaction instance in δ1 at least 8 time units. Obviously, to avoid this

unreasonable situation, one must adjust the timing constraints of δ1 or δ2 to make them

 27

IEEE Transactions on Systems, Man, and Cybernetics-Part A:Systems and Humans,
Vol.33, No.2, March 03, pp.179-193

accordant with each other. For example, after modifying the timing constraints of pA0 and

respectively to [0, 12] and [0,7], S(t

1
4Ap

A4) imposed by the timing constraints in paths δ1 and δ2 are

both [Fend(ts)+8, Fend(ts)+17]. Then the average mutual waiting time of different execution paths

is reduced to the least.

As for the OR_split structure, we should notice that the imposed timing constraints of

choice nodes A’s (C’s) different output paths a and b (c and d) are different. For pA’s two output

transitions and , their timing constraints [d1
At 2

At min(t), dmax(t)] are mutually exclusive. can

only be firable under the situations that is un-firable or ’s firing is failure. Then specification

of the exception handling of time violation or the selection of an output path in a conflict

structure can be realized using a weakly firing mode [16]. Similarly, for p

2
At

1
At 1

At

C’s two output

transitions and , if p1
Ct

2
Ct C starts enabling at T0, its output transition cannot be selected in

(T

2
Ct

0+0, T0+1), which means that path c has a higher priority than path d.

 For the boundedness verification, we should decompose an extended TCWT-net to a set of

T–components. Fig. 5(a) is the extended TCWF-net model.

After Step 1 of Algorithm 1, in which p1=pC and t= , the circuit PN1
Ct 1 in Fig. 6(b) is obtained.

Initially, PC={pA, pC}, PS=φ, and R2=R1={PN1}. After Step 2.2, PL={pC}. There is only one

choice place pC in PL, then it must be proper and merged to PS. pC has two output transitions

and , and a circuit generated from has been in R

1
Ct

2
Ct

1
Ct 2. Then after Step 2.4, only the circuit PN2 in

Fig. 6(c) are constructed and added to R1. Step 2 stops after one interation. Now, PS={pC}, and

R=R1={PN1, PN2}.

Next, let’s show how to apply Step 3 to PN1 (the case of PN2 is similar to that of PN1) of R.

Clearly, ts’s output places pA1 and pA do not belong to PN1. For pA1, transition path {ts, pA1, tA1,

, t2
4Ap A4} is constructed and merged into PN1, and then PN1 in R is replaced with the subset in

Fig. 5(d). Similarly, transition path {ts, pA, , p1
At A2, tA2, pB, tB BB, , t2

5Ap A5} is constructed for pA and

merged into the subnet in Fig. 5(d). The subnet in Fig. 5(f) is finally obtained.

However, there is a choice place pA in the new merged transition path. Then it is necessary

now to enter the sub-steps of Step 3 to obtain all the subnets propagated from the newly

 28

IEEE Transactions on Systems, Man, and Cybernetics-Part A:Systems and Humans,
Vol.33, No.2, March 03, pp.179-193

appearing choice place. In Steps 3.1-3.4, similar to Steps 2.1-2.4, a place path {pA, , p2
At A3, tA3,

pB} is constructed and used to replace place path {pB A, , p1
At A2, tA2, pBB} of Fig. 5(f). Then a new

subnet in Fig. 5(g) is generated from the subnet in Fig. 5(f). In the end, there are two subnets in

Figs. 5(f-g) derived out from PN1. Similarly, the other two subnets in Figs. 5(h-i) are obtained

from PN2. Then, the resulting set R contains four T–components as shown in Figs. 5(f-i).

However, if p1=pA and t= are selected in Step 1, the initially constructed circuit must be one

of the two circuits shown respectively in Figs 6(a-b) (In fact, under the condition of p

1
At

1=pA and

t= as mentioned formerly, Fig. 6(b) can be constructed). Obviously there are two choice places

p

1
Ct

A and pC in any of them. At this time, Step 2 needs two iterations to find all the circuits

generated from the initial circuit (for example the one in Fig. 6(a)). In the first iteration, the

proper choice place is pA. Based on pA’s two output transitions and , two circuits are

constructed as shown in Figs. 6(a-b). However, p

1
At 2

At

C is a proper choice place in the second

iteration, and two circuits shown in Figs. 6(c-d) are generated from pC’s two output transitions

 and . Because P1
Ct

2
Ct S=PC after Step 2, meaning that no new choice place exists in the newly

merged transition path, Step 3 extends directly each of them to a T-component without entering

sub-steps of Step 3. Obviously, the results are also the four T-components in Figs. 5(f-i).

After the model decomposition, we know that the workflow model corresponding to this

TCWF-net specifies the process of four kinds of transaction instances. Suppose that the four

kinds of transaction instances are I1, I2, I3, and I4, and the T–components of Figs. 5(f-i) describes

their routing paths in Fig. 5(a) respectively. Also, assuming that the average input rate of

transaction instances to the workflow model is λ=0.2, and different kinds of transaction

instances account for the same percentage in the total arrival rate, i.e., β={β1, β2, β3, β4} ={0.25,

0.25, 0.25, 0.25}. Then λI=λ*β={0.05,0.05, 0.05, 0.05}, whose ith item represents the input

rate of Ii. Based on the resulting set R (its four elements are shown in Figs. 5(f-i)), the transition

vs. T-component matrix Bn×k of the workflow model are constructed as below:

EDAACCABAAAAAAAs tttttttttttttttt 76
21

5432
21

10

 29

IEEE Transactions on Systems, Man, and Cybernetics-Part A:Systems and Humans,
Vol.33, No.2, March 03, pp.179-193

B4×16= .

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1110101111010111
1110101110101111
1101011111010111
1101011110101111

4

3

2

1

I
I
I
I

Then, the transaction instance arrival rate of each transition located in different

T-components can be obtained by calculating

EDAACCABAAAAAAAs tttttttttttttttt 76
21

5432
21

10

λt =λI*B4×16= []2.02.01.01.01.01.02.02.02.01.01.01.01.02.02.02.0

where each item λti represents the corresponding transition’s transaction instance input rate.

Now, let’s use Theorem 3 to verify this TCWF-net’s boundedness. Through computing

α(t)*λt= where α(t) represents

the vector of α(t

[]003.04.0006.006.08.06.02.02.02.110

i), α(ti)*λti for each transition is obtained. Clearly, tA0 and tA1 do not satisfy the

condition of Theorem 3, i.e., their input places are unbounded. To make the input places of tA0

and tA1 bounded (then to avoid the run-time overflow or congestion), we need to shorten

(through allocating more resources, modifying the static or dynamic resource allocation rules,

or applying new technology) their firing delays to 3 and 4. Then, the α(ti)*λti for transitions tA0

and tA1 are 0.6 and 0.8, i.e., they satisfy Theorem 3 now. Obviously, the boundedness distance of

this workflow model is 1- Max{α(ti)*λti}=0.2, and its bottleneck occurs at transitions tA1 and tA3

(their boundedness distances are both 0.2) .

7. Conclusion

 Existing workflow systems offer limited support for handling time-related issues and

detecting potential time-related problems at build, instantiation, and run times. However, they

are received more and more attentions in the workflow research.

 Static data, statistical data, and run-time information are used to estimate the remaining

execution time for workflow instances, and then adjust the activity deadlines [25][26]. Using

the integration of workflow systems with project management tools to realize the time

management is proposed in [27]. The focus of their work is the time management in running

environment. Because these techniques do not allow the specification of explicit time

 30

IEEE Transactions on Systems, Man, and Cybernetics-Part A:Systems and Humans,
Vol.33, No.2, March 03, pp.179-193

constraints, they are not applicable to build-time model analysis. A framework is presented for

computing internal deadlines so that the overall process deadline and external timing

constraints are all satisfied [10]. But it can only be used for the well-structured acyclic timed

workflow graph in which no choice structures are allowed. In order to provide process analysts

with estimates of the best, worst, and median execution times of an activity, the PERT-net

technique is used to formulate timing constraints in a workflow to compute internal deadlines in

the presence of sequential, alternative, concurrent structures [28]. The technique is extended to

handle optional structures [29]. These approaches can only deal with a single workflow

instance, which restricts their application (in most cases, there are multi-workflow-instances

running concurrently).

 These existing modeling and analysis techniques used to resolve different level of time-related

problems in a workflow model lack a common rigorous theoretic foundation, which restricts

their application in practice. The PN researchers [13], [35], [36] try to exploit the

correspondence between some special time-related PN enabling and firing rules and the

dynamic behavior of a workflow system, and then apply mechanically the state-of-the-art

PN-based techniques to analyze workflow. Since they cannot deal with different kinds of timing

constraints from practice, most of them are not immediately applicable to analysis of practical

workflow, such as the presented example in Fig. 7(a).

This paper considers the timing constraints of a workflow model from the requirement in its

actual running environment. Since a DNG-based workflow model is widely used in many

workflow products, we adopt it. Furthermore we incorporate all the necessary information,

including explicit timing constraints, structural timing constraints, and internal activity

deadlines [10, 28-29], into it. On the other hand, to provide a formal framework for modeling

and analyzing workflow, we define TCWF-net, which is constructed particularly for

specification of imposed timing constraints of a workflow. Then, a method mapping a

DNG-based workflow model built by the extended basic process modeling language onto a

TCWF-net is discussed. Based on the definitions of local and global schedulabilities, a

verification technique of the schedulability of a workflow model is presented. In order to verify

the boundedness of the resulting TCWF-net, we present a decomposition algorithm from an

acyclic and free-choice TCWF-net to a set of T-components. Using the computed result of the

 31

IEEE Transactions on Systems, Man, and Cybernetics-Part A:Systems and Humans,
Vol.33, No.2, March 03, pp.179-193

transition instance input rate of each transition, we derive the boundedness verification method

of a workflow TCWF-net model. Obviously, the time-related issues addressed in this paper

include not only overall deadline meeting (one goal of the schedulability verification) but also

the system optimization and potential problem detection.

 Mapping an extended DNG-based workflow model onto a TCWF-net links the practical

application and theoretic analysis techniques of PN theory. If an appropriate mapping method is

provided, which is just like an interface, the timing constraints of all kinds of workflow models

with the free-choice characteristics defined by different fashionable modeling tools can be

analyzed using the proposed methods.

 This paper mainly focused on the time dimension verification of the workflow model at the

build-time. The future work should deal with process execution monitoring and management in

the enactment environment. Finding some appropriate coordination mechanisms to schedule

the execution of the constituent activities of a workflow system is an important and interesting

problem especially in the environment where multi-processes or multi-instances run

concurrently. Verifying a workflow model from the resource and information perspectives is

also a challenge.

References

[1] W. M. P. van der Aalst. The Application of Petri Nets to Workflow Management. The Journal of Circuits, Systems and

Computers 8 (1): 21-66, (1998).

[2] W. Sadiq and M. E. Orlowska. Analyzing Process Models Using Graph Reduction Techniques, Information Systems, Vol. 25,

No. 2, pp. 117-134, 2000.

[3] Y. S. Fan. Fundamentals of Workflow Management Technology. Tsinghua University Press, Springer, 2001(in Chinese).

[4] C. A. Ellis and G. J. Nutt. Modeling and Enactment of Workflow Systems. In Proceedings of the 14th International Conference

Chicago, Illinois, USA, June 1993, M. A. Marsan, editor, Application and Theory of Petri Nets 1993, volume 691 of Lecture

Notes in Computer Science, Springer-Verlag, Berlin, pp. 1-16 (1993).

[5] D. Georgakopoulos, M. Hornick and A. Sheth. An Overview of Workflow Management: From Process Modeling to Workflow

Automation Infrastructure. Distributed and Parallel Databases, 3: 119-153 (1995).

[6] S. Jablonski and C. Bussler. Workflow Management: Modeling Concepts, Architecture, and Implementation. International

Thomson Computer Press (1996).

 32

IEEE Transactions on Systems, Man, and Cybernetics-Part A:Systems and Humans,
Vol.33, No.2, March 03, pp.179-193

[7] P. Lawrence, editor. Workflow Handbook 1997, Workflow Management Coliation. John Wiley and Sons, New York (1997).

[8] J. Q. Li and Y. S. Fan. Research on the Petri Net Reduction Method Based Workflow Model Verification, Information and

Control (in Chinese) forthcoming

[9] W. M. P. van der Aalst and Arthur H. M. ter Hofstede. Verification of Workflow Task Structures: A Petri-Net-Based Approach,

Information systems Vol. 25. No. 1, pp. 43-69 2000.

[10] J. Eder, E. Panagos and M. Rabinovich. Time Constraints in Workflow Systems. Advanced Information Syatem Engineering

Vol.1626 of Lecture Notes in Computer Science, pp. 286-300. Springer 1999.

[11] C. A. Petri. Kommunikation mit Automation. PhD thesis, University of Bonn, Bonn, Germany 1962(In German).

[12] W. M. P. van der Aalst. Chapter 10: Three Good Reasons for Using a Petri-net-based Workflow Management System. In T.

Wakayama et al., editor, Information and Process Integration in Enterprise: Rethinking docmuments, The Kluwer International

Series in Engineering and Computer Science, Kluwer Academic Publishers, Norwell pp. 161-182 (1998).

[13] N. R. Adam, V. Atluri and W. K. Huang, Modeling and Analysis of Workflow Using Petri Nets. Journal of Intelligent

Information Systems: Special Issue on Workflow and Process Management, M. Rusinkiewicz and S. H. Abdelsalam, editor, Vol.

10, No. 2, pp. 1-29, 1998.

[14] E. Badouel and J. Oliver, Reconfigurable Nets, a Class of High Level Petri Nets Supporting Dynamic Changes within

Workflow Systems, Publication Interne IRISA PI 1163, 1998.

[15] Workflow Management Coalition. Interface 1:Process Defition Interchange,Process Model. Document Number WfMC

TC-1016-P (1998).

[16] J. P. Tsai and S. J Yang. Timing Constraint Petri Nets and Their Application to Schedulalibility Analysis of Real-Time

System Specification IEEE Trans Software Engineering, 1995, 21 (1): 32-49.

[17] Murata. Petri Nets: Properties, Analysis and Applications. Proceeding of the IEEE, Vol. 79(4), Appril 1989.

[18] M. A. Holliday and M. K. Vernon, A Generalized Timed Petri Net Model for Performance Analysis. IEEE Trans. Software

Eng., Vol. SE-13, pp. 1297-1310, Dec. 1987.

[19] B. Liu and A. Robbi, TipNet: a Graphical Tool for Timed Petri Nets. International Workshop on Petri Nets and Performance

Models, 1995 212-213.

[20] C. V. Ramamoorthy and G. S. Ho, Performance Evaluation of Asynchronous Concurrent Systems Using Petri Nets. IEEE

Trans. Software Eng., Vol. SE-6, pp. 440-516, Apr. 1987.

[21] N. G.Leveson and J. L. Stolzy, Safety Analysis Using Petri Nets. IEEE Trans. Software Eng., Vol. SE-13, No. 3, pp. 386-397,

Mar. 1987.

[22] P. M. Merlin and D. J. Farber, Recoverability of Communication Protocols Implications of a Theoretical Study. IEEE Trans.

 33

IEEE Transactions on Systems, Man, and Cybernetics-Part A:Systems and Humans,
Vol.33, No.2, March 03, pp.179-193

Commun., Vol. COM-24, pp. 1036-1043, Sept. 1976.

[23] B. Serthomieu and M. Diaz. Modeling and Verification of Time Dependent System Using Time Petri nets IEEE Trans.

Software Engineering, 1991, 17 (3): 259-273.

[24] E. Best. Structure theory of Petri nets: the free choice hiatus. In W. Brauer, W. Reisig and G. Rozenberg, editors, Advances in

Petri nets 1986 Part I:Petri Nets,Central Models and Their Properties,Vol. 254 of Lecture Notes in Computer Science, pp.

168-206. Springer-Verlag, Berlin, 1987.

[25] E. Panagos and M. Rabinovich. Predictive workflow management. In Proceedings of the 3rd International Workshop on Next

Generation Information Technologies and Systems, Neve Ilan, ISRAEL, June 1997.

[26] E. Panagos and M. Rabinovich. Reducing escalation-related costs in WFMSs. In A. Dogac et al., editors, NATO Advanced

Study Institute on Workflow Management Systems and Interoperability. Springer, Istanbul, Turkey, August 1997.

[27] C. Bussler. Workflow Instance Scheduling with Project Management Tools. In 9th Workshop on Database and Expert System

Applications DEXA’98, Vienna, Austria, 1998. IEEE Computer Society Press.

[28] H. Pozewauning, J. Eder and W. Liebhart. EPERT: Extending PERT for Workflow Management Systems. In First

EastEurapean Symposium on Advances in Database and Information Systems ADBIS’97, St. Pertersburg, Russia, Sept. 1997.

[29] J. Eder, E. Panagos, H. Pozewaunig and M. Rabinovich. Time Management in Workflow Systems, in Proceeding of

International Conference on Business Information Systems, April 1999, 266-280.

[30] M. D. Zisman, Representation, specification and Automation of Office Procedures, University of Pennsylvania Wharton

School of Business, PhD Thesis, 1997.

[31] Y. Han, HOON-A Formalism Supporting Adaptive Workflows, Technical Report #UGA-CS-TR-97-005, Department of

Computer Science, University of Georgia, November 1997.

[32] D. Wikarski, An Introduction to Modular Process Nets, Technical Report TR-96-019, International Computer Science

Institute (ICSI) Berkley, CA, USA, 1996.

[33] A. Agostini, G. De Michelis and K. Petruni, Keeping Workflow Models as Simple as Possible, In Proceedings of the

Workshop on Computer-Supported Cooperative Work, Petri nets and Related Formalisms within the 15th International

Conference on application and Theory of Petri Nets, Zaragoza, Spain, June 21st, pp. 11-29, 1994.

[34] Elmagarmid, A. K., Len, Y., Litwin, W., and Businkiewicz, M. (1990). A Multidatabase Transaction Model for InterBase. In

Proceeding of 16th International Conference On Verg Large Data Bases, pp. 507-518, Briabane, Australia.

[35] A. Ferscha, Qualitative and Quantitative Analysis of Business Workflows using Generalized Stochastic Petri Nets, In

Proceeding of CON,94: Workflow Management- Challenges, Paradigms and Products, Linz, Australia, October 19-21, 1994, G.

Chroust, A. Benczur (Eds.), pp. 222-234, Olderbourg Verlag, 1994.

 34

IEEE Transactions on Systems, Man, and Cybernetics-Part A:Systems and Humans,
Vol.33, No.2, March 03, pp.179-193

[36] A. K. Schomig and H. Rau, A Petri Net Approach for the Performance Analysis of Business Process, University of

Wurzburg, Report 116 Semiar at IBFI, Schloss Dagstuhl, May 22-26, 1995.

[37] K. Gerrit, Jan Verelst, and Bart Weyn, Techniques for modeling Workflows and Their Support of Resuse, Business Process

Management, LNCS 1806, W. van der Aalst et al. (Eds) pp. 1-15, 2000.

[38] W. M. P. van der Aslst, and Arthur H. M. Ter Hofstede. Verification of Workflow Task Structures: A Petri-Net-Based

Approach. Information Systems Vol. 25, No. 1, pp. 43-69, 2000.

[39] W. M. P. van der Aslst. Finding Errors in the Design of a Workflow Process: A Petri-net-based Approach. In W. M. P. van der

Aslst, G. De Michelis, and C. A. Ellis, editors, Proceedings of Workflow Management: Net-based Concepts, Models,

Techniques and Tools (WFM’98), Vol. 98/7 of Computing Science Reports Eindhoven University of Technology, Eindhoven,

pp. 60-81, Lisbon, Portugal (1998).

[40] T. Basten. In Terms of Nets, Systems Design with Petri Nets and Process Algebra. Ph. d thesis, Eindhoven University of

Technology, Eindhoven, The Netherlands (1998).

[41] M. Voorhoeve. Modeling and Verification of Workflow Nets. In W. M. P. van der Aslst. and C. A. Ellis, editors, Proceedings

of Workflow Management: Net-based Concepts, Models, Techniques and Tools (WFM’98), Vol. 98/7 of Computing Science

Reports Eindhoven University of Technology, Eindhoven, pp. 96-108, Lisbon, Portugal (1998).

[42] W. M. P. van der Aslst.and C. A. Ellis, editors, Proceedings of Workflow Management: Net-based Concepts, Models,

Techniques and Tools (WFM’98), Lisbon, Portugal, UNINOVA, Lisbon (1998).

[43] G. De Michelis. C. A. Ellis, and G.Memmi, editors. Proceedings of the second Workshop on Computer-Supported

Cooperative Work, Petri nets and related formalisms Zaragoza, Spain (1994).

[44] A. Ferscha, Business workflow analysis using Generalized Stochastic Petri Nets, Nine Austrian -Hungarian Informatics

Conference, 1994, pp. 222-234.

[45] M. Merz, D. Moldt, K. Muller, S., Donateli, W. Lamerdorf, Workflow Modeling and Execution with Coloured Petri Nets in

COSM, Proceedings of the Workshop on Applications of Petri Nets to Protocols within the 16th International Conference on

Application and Theory of Petri Nets, 1995.

[46] E. Kindler, A. Martens, W. Reisig, Inter-operability of Workflow Applications: Local Criteria for Global Soundness, in

Business Process Management, LNCS 1806, W. van der Aalst et al. (Eds), pp. 235-253, 2000.

[47] K. M. van Hee, H.A. Reijers, Using Formal Analysis Techniques in Business Process Redesign, in Business Process

Management, LNCS 1806, W. van der Aalst et al. (Eds), pp. 142-160, 2000.

[48] Yang Qu, Chuang Lin, and Jiye Wang Linear Temporal Inference of Workflow Management Systems Based on Timed Petri

Nets Models, Lecture Notes in Computer Science 2480, pp. 30 –44, 2002

 35

IEEE Transactions on Systems, Man, and Cybernetics-Part A:Systems and Humans,
Vol.33, No.2, March 03, pp.179-193

[49] Chuang Lin, Yang Qu, Fengyuan Ren, and Dan C. Marinescu, Performance Equivalent Analysis of Workflow Systems

Based on Stochastic Petri Net Models, Lecture Notes in Computer Science 2480, pp. 64 –79, 2002.

[50] K. Salimifard, M. Wright, Petri net-base Modeling of Workflow Systems: An Overview, European Journal of Operational

Research 134 (2001), pp. 664-676.

 36

	Timing Constraint Workflow Nets for Workflow Analysis
	Keywords: Workflow model, Petri nets, Boundedness, and Schedulability
	3. Model mapping
	5. Boundedness verification of a workflow model

